Objectives: The effects of propolis and phenolic compounds (caffeic acid - Caf; dihydrocinnamic acid - Cin; p-coumaric acid - Cou) in the same quantity found in our propolis sample were investigated on human laryngeal epidermoid carcinoma (HEp-2) cells.

Methods: Cell viability, apoptosis/necrosis and cell cycle arrest, P53 and CASPASE-3 gene expression, generation of reactive oxygen species (ROS) and the ability of propolis to induce doxorubicin (DOX) efflux using a P-glycoprotein (P-gp) inhibitor (verapamil) were assayed.

Key Findings: Propolis exerted a cytotoxic effect on HEp-2 cells, whereas isolated compounds had no effect on cell viability. Higher concentrations were tested and Caf induced late apoptosis or necrosis in HEp-2 cells, while propolis induced apoptosis, both probably due to ROS generation. P53 expression was downregulated by propolis but not by Caf. CASPASE-3 expression was correlated with induction of both early and late apoptosis, with both propolis and Caf alone upregulating its expression. Propolis induced cell cycle arrest at G2/M phase and Caf at S phase. Propolis but not Caf may act as a P-gp inhibitor by modulating P-gp activity and inhibiting DOX efflux.

Conclusions: Propolis exerted cytotoxic effects on HEp-2 cells, and the mechanisms are discussed, showing its potential as an antitumour drug.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jphp.12789DOI Listing

Publication Analysis

Top Keywords

hep-2 cells
16
propolis caf
12
propolis
11
caffeic acid
8
cell viability
8
cell cycle
8
cycle arrest
8
p-gp inhibitor
8
propolis exerted
8
exerted cytotoxic
8

Similar Publications

Effects of environment regulating T4SS on virulence and adaptability of Streptococcus suis.

Environ Res

January 2025

College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China. Electronic address:

Streptococcus suis (S. suis) represents a significant bacterial pathogen, with its zoonotic transmission from infected or deceased pigs to humans posing a serious threat to public health. The type IV secretion system (T4SS), a critical virulence factor of S.

View Article and Find Full Text PDF

Fumarprotocetraric acid and geraniin were identified as novel inhibitors of human respiratory syncytial virus infection .

Front Cell Infect Microbiol

January 2025

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Introduction: Respiratory syncytial virus (RSV) remains a major international public health concern. However, disease treatment is limited to preventive care with monoclonal antibodies and supportive care. In this study, natural products were screened to identify novel anti-RSV inhibitors.

View Article and Find Full Text PDF

The global burden of respiratory syncytial virus (RSV) and severe associated disease is prodigious. RSV-specific vaccines have been launched recently but there is no antiviral medicine commercially available. RSV polymerase (L) protein is one of the promising antiviral targets, along with fusion and nucleocapsid proteins.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is one of the most prevalent viruses that causes severe acute lower respiratory tract infections (ALRTIs) in the elderly and young children. There is no specific drug to treat RSV, only a broad-spectrum antiviral, ribavirin, which is only used in critical cases. Our research group is investigating antiviral agents of natural origin, such as coumarins and flavonoids, that may help reduce or prevent RSV infection.

View Article and Find Full Text PDF

New haloaminopyrazole derivatives differing in the number of pyrazole nuclei - and -, respectively, were synthesized and characterized by H-NMR, C-NMR, IR, UV-Vis, and elemental analysis. The single-crystal X-ray diffraction method was used to describe compounds and . When tested on normal NCTC fibroblasts in vitro, the newly synthesized derivatives were shown to be non-cytotoxic at a dosage of 25 μg/mL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!