The tetraazamacrocyclic ligand 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (TMC) has been used to bind a variety of first-row transition metals but to date the crystal structure of the cobalt(II) complex has been missing from this series. The missing cobalt complex chlorido(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane-κN)cobalt(II) chloride dihydrate, [CoCl(CHN)]Cl·2HO or [CoCl(TMC)]Cl·2HO, crystallizes as a purple crystal. This species adopts a distorted square-pyramidal geometry in which the TMC ligand assumes the trans-I configuration and the chloride ion binds in the syn-methyl pocket of the ligand. The Co ion adopts an S = 3/2 spin state, as measured by the Evans NMR method, and UV-visible spectroscopic studies indicate that the title hydrated salt is stable in solution. Density functional theory (DFT) studies reveal that the geometric parameters of [CoCl(TMC)]Cl·2HO are sensitive to the cobalt spin state and correctly predict a change in spin state upon a minor perturbation to the ligand environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2053229617010397 | DOI Listing |
Nat Commun
January 2025
School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, PR China.
Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
A small but growing set of radical SAM (-adenosyl-l-methionine) enzymes catalyze the radical mediated dehydration or dehydrogenation of 1,2-diol substrates. In some cases, these activities can be interchanged via minor structural perturbations to the reacting components raising questions regarding the relative importance of hyperconjugation, proton circulation and leaving group stability in determining the reaction outcome. The present work describes trapping and electron paramagnetic resonance (EPR) characterization of an α-hydroxyalkyl radical intermediate during dehydration and dehydrogenation of cytosylglucuronic acid and its derivatives catalyzed by the radical SAM enzyme BlsE and its Glu189Ala mutant from the blasticidin S biosynthetic pathway.
View Article and Find Full Text PDFMolecules
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, , in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating -diphenylamino group are introduced into two different benzene rings of [2.
View Article and Find Full Text PDFMolecules
January 2025
Istituto di Biostrutture e Bioimmagini-CNR (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy.
We perform DFT calculations with different hybrid (ωB97X-D and M05-2X) and double hybrid (B2PLYP-D3 and ωB2PLYP) functionals to characterize the lowest energy triplet excited states of naphthalene monomer and dimers in different stacking arrangements and to simulate their absorption spectra. We show that both excimer and localized triplet minima exist. In the former, the spin density is delocalized over the two monomers, adopting a face-to-face arrangement with a short inter-molecular distance.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA.
In this paper, we review our work on the manipulation of magnetization in ferromagnetic semiconductors (FMSs) using electric-current-induced spin-orbit torque (SOT). Our review focuses on FMS layers from the (Ga,Mn)As zinc-blende family grown by molecular beam epitaxy. We describe the processes used to obtain spin polarization of the current that is required to achieve SOT, and we briefly discuss methods of specimen preparation and of measuring the state of magnetization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!