AI Article Synopsis

Article Abstract

In this letter, we report for the first time very large phase shifts of microwaves in the 1-10 GHz range, in a 1 mm long gold coplanar interdigitated structure deposited over a 6 nm Hf Zr O ferroelectric grown directly on a high resistivity silicon substrate. The phase shift is larger than 60° at 1 GHz and 13° at 10 GHz at maximum applied DC voltages of ±3 V, which can be supplied by a simple commercial battery. In this way, we demonstrate experimentally that the new ferroelectrics based on HfO could play an important role in the future development of wireless communication systems for very low power applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa8425DOI Listing

Publication Analysis

Top Keywords

large phase
8
phase shift
8
shift microwave
4
microwave signals
4
signals ferroelectric
4
ferroelectric ±3
4
±3 letter
4
letter report
4
report time
4
time large
4

Similar Publications

Tumour 'bulk' has historically been considered an important prognostic marker and clinical tool to guide treatment in patients with lymphoma. However, its use and definitions in trial designs varies significantly and it is unclear how this has influenced the relevance of bulk in contemporary practice. This comprehensive literature review evaluated the definitions, applications and prognostic impact of bulk in phase 3 randomised trials in four major lymphoma subtypes.

View Article and Find Full Text PDF

The success of pollen-pistil interaction in Mauritia flexuosa (buriti), a palm adapted to the humid ecosystems, 'veredas', within the Cerrado, is influenced by intrinsic and environmental factors. Its supra-annual flowering, dioecy, and adverse climate conditions pose challenges for fertilization, therefore information on floral biology is essential. This study aimed to ascertain stigma receptivity, and elucidate structural, cytochemical, and ultrastructural aspects of the pollen-pistil relationship.

View Article and Find Full Text PDF

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

Nat Mater

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a global health challenge associated with lifestyle factors such as diet, alcohol, BMI, smoking, sleep, and physical activity. Metabolomics, especially nuclear magnetic resonance(NMR), offers insights into metabolic profiles' role in diseases, but more research is needed on its connection to CKD and lifestyle factors. Therefore, we utilized the latest metabolomics data from the UK Biobank to explore the relationship between plasma metabolites and lifestyle factors, as well as to investigate the associations between various factors, including lifestyle-related metabolites, and the latent phase of CKD onset.

View Article and Find Full Text PDF

Design of antiferroelectric polarization configuration for ultrahigh capacitive energy storage via increasing entropy.

Nat Commun

January 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, China.

Electric field induced antiferroelectric-ferroelectric phase transition is a double-edged sword for energy storage properties, which not only offers a congenital superiority with substantial energy storage density but also poses significant challenges such as large polarization hysteresis and poor efficiency, deteriorating the operation and service life of capacitors. Here, entropy increase effect is utilized to simultaneously break the long-range antiferroelectric order and locally adjust the fourfold commensurate modulated polarization configuration, leading to a breakthrough in the trade-off between recoverable energy storge density (14.8 J cm) and efficiency (90.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!