Electrolytic CO Reduction in Tandem with Oxidative Organic Chemistry.

ACS Cent Sci

Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.

Published: July 2017

Electrochemical reduction of CO into carbon-based products using excess clean electricity is a compelling method for producing sustainable fuels while lowering CO emissions. Previous electrolytic CO reduction studies all involve dioxygen production at the anode, yet this anodic reaction requires a large overpotential and yields a product bearing no economic value. We report here that the cathodic reduction of CO to CO can occur in tandem with the anodic oxidation of organic substrates that bear higher economic value than dioxygen. This claim is demonstrated by 3 h of sustained electrolytic conversion of CO into CO at a copper-indium cathode with a current density of 3.7 mA cm and Faradaic efficiency of >70%, and the concomitant oxidation of an alcohol at a platinum anode with >75% yield. These results were tested for four alcohols representing different classes of alcohols and demonstrate electrolytic reduction and oxidative chemistry that form higher-valued carbon-based products at both electrodes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5532713PMC
http://dx.doi.org/10.1021/acscentsci.7b00207DOI Listing

Publication Analysis

Top Keywords

electrolytic reduction
12
carbon-based products
8
electrolytic
4
reduction tandem
4
tandem oxidative
4
oxidative organic
4
organic chemistry
4
chemistry electrochemical
4
reduction
4
electrochemical reduction
4

Similar Publications

Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/CuO with Ag Single Atoms to Drive CO Electroreduction.

Adv Mater

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.

View Article and Find Full Text PDF

: Hyperkalemia is a common electrolyte disorder in patients with heart failure and reduced ejection fraction (HFrEF). Renin-angiotensin-aldosterone system inhibitors (RAASi) have been shown to improve survival and decrease hospitalization rates, although they may increase the serum potassium levels. Hyperkalemia has significant clinical and economic implications, and is associated with increased healthcare resource utilization.

View Article and Find Full Text PDF

This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.

View Article and Find Full Text PDF

Cytotoxic ROS-Consuming Mn(III) Synzymes: Structural Influence on Their Mechanism of Action.

Int J Mol Sci

December 2024

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy.

ROS (i.e., reactive oxygen species) scavenging is a key function of various Mn-based enzymes, including superoxide dismutases (SODs) and catalases, which are actively linked to oxidative stress-related diseases.

View Article and Find Full Text PDF

Potassium-ion batteries (KIBs) have attracted significant attention in recent years as a result of the urgent necessity to develop sustainable, low-cost batteries based on non-critical raw materials that are competitive with market-available lithium-ion batteries. KIBs are excellent candidates, as they offer the possibility of providing high power and energy densities due to their faster K diffusion and very close reduction potential compared with Li/Li. However, research on KIBs is still in its infancy, and hence, more investigation is required both at the materials level and at the device level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!