Spatial shifts in insect fauna due to ecological heterogeneity can severely constrain plant reproduction. Nonetheless, data showing effects of insect visit patterns and intensity of mutualistic and/or antagonistic plant-insect interactions on plant reproduction over structured ecological gradients remain scarce. We investigated how changes in flower-visitor abundance, identity and behaviour over a forest-open habitat gradient affect plant biotic interactions, and quantitative and qualitative fitness in the edge-specialist . Composition and behaviour of the insects visiting flowers of strongly varied over the study gradient, influencing strength and patterns of plant biotic interactions (i.e. herbivory and pollination likelihood). Seed set comparison in free- and manually pollinated flowers suggested spatial variations in the extent of quantitative pollen limitation, which appeared more pronounced at the gradient extremes. Such variations were congruent to patterns of flower visit and plant biotic interactions. The analyses on seed and seedling viability evidenced that spatial variation in amount and type of pollinators, and frequency of herbivory affected qualitative fitness of by influencing selfing and outcrossing rates. Our work emphasizes the role of plant biotic interactions as a fine-scale mediator of plant fitness in ecotones, highlighting that optimal plant reproduction can take place into a restricted interval of the ecological gradients occurring at forest edges. Reducing the habitat complexity typical of such transition contexts can threat edge-adapted plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534021PMC
http://dx.doi.org/10.1093/aobpla/plx031DOI Listing

Publication Analysis

Top Keywords

biotic interactions
20
plant biotic
16
plant reproduction
12
plant
9
ecological gradients
8
qualitative fitness
8
interactions
6
biotic
5
local shifts
4
shifts floral
4

Similar Publications

Accelerated Destruction of Passive Film and Microbial Corrosion of 316L Stainless Steel via Extracellular Electron Transfer.

Angew Chem Int Ed Engl

January 2025

Northeastern University, Corrosion and Protection Center, NO. 3-11, Wenhua Road, Heping District, Shenyang, P. R. China, Shenyang, CHINA.

The dense passive film on 316L stainless steel is the key in its corrosion resistance. Its interactions with an electroactive biofilm are critical in deciphering microbial corrosion. Herein, an in-depth investigation using genetic manipulations and addition of an exogenous electron mediator found that extracellular electron transfer (EET) mediated by the electroactive S.

View Article and Find Full Text PDF

In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity.

View Article and Find Full Text PDF

Rootstocks and drought stress impact the composition and functionality of grapevine rhizosphere bacterial microbiota.

Microbiol Res

January 2025

Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Gobierno de la Rioja - Universidad de La Rioja, Logroño 26007, Spain. Electronic address:

The microbiota, a component of the plant holobiont, plays an active role in the response to biotic and abiotic stresses. Nowadays, with recurrent drought and global warming, a growing challenge in viticulture is being addressed by different practices, including the use of adapted rootstocks. However, the relationships between these practices, abiotic stress and the composition and functions of the rhizosphere microbiota remain to be deciphered.

View Article and Find Full Text PDF

Advances in Protein Kinase Regulation of Stress Responses in Fruits and Vegetables.

Int J Mol Sci

January 2025

Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates.

Fruits and vegetables (F&Vs) are essential in daily life and industrial production. These perishable produces are vulnerable to various biotic and abiotic stresses during their growth, postharvest storage, and handling. As the fruit detaches from the plant, these stresses become more intense.

View Article and Find Full Text PDF

Phytochrome-interacting factors (PIFs) play a crucial role in regulating plant growth and development. However, studies on soybean PIFs are limited. Here, we identified 22 GmPIF genes from the soybean genome and classified the GmPIF proteins into 13 subfamilies based on amino acid sequence homology, secondary and tertiary structures, protein structure, and conserved motifs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!