Von Willebrand factor (VWF) is secreted as an acute phase protein during inflammation. ADAMTS-13 regulates the size and prothrombotic activity of VWF by it's specific proteolytic activity. To determine the relevance of this regulatory pathway for the innate inflammatory response by polymorphonuclear neutrophils (PMN), we employed a mouse model of invasive pulmonary aspergillosis (IPA) where PMN functionality is crucial for fungal clearance and survival. IPA was induced by intratracheal application of Aspergillus fumigatus (A. fumigatus) conidia in wildtype (129/Sv/Pas) or ADAMTS-13 deficient (Adamts13 ) mice. While neutropenic mice developed lethal IPA, all wildtype mice survived the infection. In contrast to wildtype or VWF deficient mice, Adamts13 mice displayed more severe signs of disease with a lethal course in 24% with an increased fungal burden and signs of acute lung injury. Histology sections demonstrated a more pronounced perivascular leukocyte infiltration in support of a dysregulated inflammatory response in Adamts13 mice. Importantly, we observed no general defect in the activation of neutrophil functions in response to conidia or hyphae in vitro. Therefore, we conclude that the proteolytic regulation of VWF by ADAMTS-13 or ADAMTS-13 by itself is an important mechanism to control PMN recruitment in acute inflammatory processes, such as fungal pneumonias.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5543100 | PMC |
http://dx.doi.org/10.1038/s41598-017-07340-3 | DOI Listing |
J Clin Transl Hepatol
January 2025
Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.
Background And Aims: Pyrrolizidine alkaloids (PAs), widely distributed in plants, are known to induce liver failure. Hepatic platelet accumulation has been reported during the progression of PA-induced liver injury (PA-ILI). This study aimed to investigate the mechanisms underlying platelet accumulation in PA-ILI.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66160, USA. Electronic address:
Background: A loss-of-functional mutation (W1183R) in human complement factor H (CFH) is associated with complement-associated hemolytic uremic syndrome; mice carrying a similar mutation (W1206R) in CFH also develop thrombotic microangiopathy but its plasma von Willebrand factor (VWF) multimer sizes were dramatically reduced. The mechanism underlying such a dramatic change in plasma VWF multimer distribution in these mice is not fully understood.
Objectives: To determine the VWF and CFH interaction and how CFH proteins affect VWF multimer distribution.
Sci Rep
January 2025
Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea.
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare and life-threatening blood disorder characterized by the formation of blood clots in small blood vessels. It is caused by antibodies targeting the A disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13 (ADAMTS13), which plays a role in cleaving von Willebrand factor. Most patients with iTTP have autoantibodies against specific domains of the ADAMTS13 protein, particularly the cysteine-rich and spacer domains.
View Article and Find Full Text PDFBlood Adv
January 2025
University of Iowa, Iowa city, Iowa, United States.
Respiratory tract infections (RTIs) caused by bacteria or viruses are associated with stroke severity. Recent studies have revealed an imbalance in the von Willebrand factor (VWF)-ADAMTS13 axis in patients with RTIs, including COVID-19. We examined whether this imbalance contributes to RTI-mediated stroke severity.
View Article and Find Full Text PDFEur Heart J
October 2024
Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
Background And Aims: Heart failure (HF) is a leading cause of mortality worldwide and characterized by significant co-morbidities and dismal prognosis. Neutrophil extracellular traps (NETs) aggravate inflammation in various cardiovascular diseases; however, their function and mechanism of action in HF pathogenesis remain underexplored. This study aimed to investigate the involvement of a novel VWF-SLC44A2-NET axis in HF progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!