Many patients with chronic pancreatitis develop diabetes (chronic pancreatitis-related diabetes [CPRD]) through an undetermined mechanism. Here we used long-term partial pancreatic duct ligation (PDL) as a model to study CPRD. We found that long-term PDL induced significant β-cell dedifferentiation, followed by a time-dependent decrease in functional β-cell mass-all specifically in the ligated tail portion of the pancreas (PDL-tail). High levels of transforming growth factor β1 (TGFβ1) were detected in the PDL-tail and were mainly produced by M2 macrophages at the early stage and by activated myofibroblasts at the later stage. Loss of β-cell mass was then found to result from TGFβ1-triggered epithelial-mesenchymal transition (EMT) by β-cells, rather than resulting directly from β-cell apoptosis. Mechanistically, TGFβ1-treated β-cells activated expression of the EMT regulator gene Snail in a SMAD3/Stat3-dependent manner. Moreover, forced expression of forkhead box protein O1 (FoxO1), an antagonist for activated Stat3, specifically in β-cells ameliorated β-cell EMT and β-cell loss and prevented the onset of diabetes in mice undergoing PDL. Together, our data suggest that chronic pancreatitis may trigger TGFβ1-mediated β-cell EMT to lead to CPRD, which could substantially be prevented by sustained expression of FoxO1 in β-cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606322PMC
http://dx.doi.org/10.2337/db17-0537DOI Listing

Publication Analysis

Top Keywords

β-cell
8
epithelial-mesenchymal transition
8
chronic pancreatitis-related
8
pancreatitis-related diabetes
8
chronic pancreatitis
8
β-cell emt
8
smad3/stat3 signaling
4
signaling mediates
4
mediates β-cell
4
β-cell epithelial-mesenchymal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!