Platelet-derived growth factor (PDGF)-A, which only signals through PDGF-receptor-α (PDGFR-α), is required for secondary alveolar septal formation. Although PDGFR-α distinguishes mesenchymal progenitor cells during the saccular stage, PDGFR-α-expressing alveolar cells persist through adulthood. PDGF-A sustains proliferation, limits apoptosis, and maintains α-smooth muscle actin (α-SMA)-containing alveolar cells, which congregate at the alveolar entry ring at postnatal day (P)12. PDGFR-α-expressing, α-SMA-containing alveolar cells redistribute in the elongating septum, suggesting that they migrate to the alveolar entry rings, where mechanical tension is higher. We hypothesized that PDGFR-α and Ras-related C3 botulinum toxin substrate 1(Rac1) are required for mechanosensitive myofibroblast migration. Spreading of PDGFR-α-deficient lung fibroblasts was insensitive to increased rigidity, and their migration was not reduced by Rac1-guanine exchange factor (GEF)-inhibition. PDGFR-α-expressing fibroblasts migrated toward stiffer regions within two-dimensional substrates by increasing migrational persistence (durotaxis). Using a Förster resonance energy transfer (FRET) biosensor for Rac1-GTP, we observed that PDGFR-α was required for fibroblast Rac1 responsiveness to stiffness within a three-dimensional collagen substrate, which by itself increased Rac1-FRET. Rho-GTPase stabilized, whereas Rac1-GTPase increased the turnover of focal adhesions. Under conditions that increased Rac1-GTP, PDGFR-α signaled through both phosphoinositide-3-kinase (PIK) or Src to engage the Rac1 GEF dedicator of cytokinesis-1 (Dock180) and p21-activated-kinase interacting exchange factor-β (βPIX). In cooperation with collagen fibers, these signaling pathways may guide fibroblasts toward the more rigid alveolar entry ring during secondary septation. Because emphysema and interstitial fibrosis disrupt the parenchymal mechanical continuum, understanding how mechanical factors regulate fibroblast migration could elicit strategies for alveolar repair and regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00185.2017 | DOI Listing |
Immunohorizons
January 2025
Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.
Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
Current hydrogel strain sensors have never been integrated into dynamic organ-on-a-chip (OOC) due to the lack of sensitivity in aqueous cell culture systems. To enhance sensing performance, a novel strain sensor is presented in which the MXene layer is coated on the bottom surface of a pre-stretched anti-swelling hydrogel substrate of di-acrylated Pluronic F127 (F127-DA) and chitosan (CS) for isolation from the cell culture on the top surface. The fabricated strain sensors display high sensitivity (gauge factor of 290.
View Article and Find Full Text PDFPathophysiology
January 2025
Division of Anatomical Pathology, Department of Pathology, College of Medicine, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
: Cause of death analysis is fundamental to forensic pathology. We present the case of a 9½-year-old girl with a genetically confirmed diagnosis of Dravet syndrome who died in her sleep with no evidence of motor seizure. She also had a lifelong history of recurrent pneumonias and, along with her family, had tested positive for COVID-19 10 days before death.
View Article and Find Full Text PDFProteomes
January 2025
Research & Development, AbbVie Bioresearch Center, Worcester, MA 01605, USA.
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as fibroblast foci. To address this, we integrated published spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) transcriptomics and adopted the Query method and the Overlap method to determine cell type enrichments in histopathological regions.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Metabolic and Immune Diseases Department, Biomedical Research Institute Sols-Morreale (IIBM), National Research Council (CSIC), Autonoma University of Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.).
Background: Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia-inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!