A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

First Selective 12-LOX Inhibitor, ML355, Impairs Thrombus Formation and Vessel Occlusion In Vivo With Minimal Effects on Hemostasis. | LitMetric

First Selective 12-LOX Inhibitor, ML355, Impairs Thrombus Formation and Vessel Occlusion In Vivo With Minimal Effects on Hemostasis.

Arterioscler Thromb Vasc Biol

From the Department of Pharmacology (R.A., B.E.T., K.M., J.Y., M.H.) and Department of Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor; Chemistry and Biochemistry, University of California Santa Cruz (J.C.F., A.G., T.R.H.); and National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, MD (D.K.L., A.J., A.S., D.J.M.).

Published: October 2017

AI Article Synopsis

  • Adequate platelet reactivity is crucial for blood clotting, but too much can cause dangerous blood clots; the enzyme 12-lipoxygenase (12-LOX) is essential in regulating this balance.
  • The study tested a selective 12-LOX inhibitor called ML355, which effectively reduced platelet aggregation and thrombus formation in lab settings and animal models.
  • Results showed that targeting 12-LOX with ML355 may lead to new treatments for preventing excessive blood clotting while causing minimal bleeding risk.

Article Abstract

Objective: Adequate platelet reactivity is required for maintaining hemostasis. However, excessive platelet reactivity can also lead to the formation of occlusive thrombi. Platelet 12(S)-lipoxygenase (12-LOX), an oxygenase highly expressed in the platelet, has been demonstrated to regulate platelet function and thrombosis ex vivo, supporting a key role for 12-LOX in the regulation of in vivo thrombosis. However, the ability to pharmacologically target 12-LOX in vivo has not been established to date. Here, we studied the effect of the first highly selective 12-LOX inhibitor, ML355, on in vivo thrombosis and hemostasis.

Approach And Results: ML355 dose-dependently inhibited human platelet aggregation and 12-LOX oxylipin production, as confirmed by mass spectrometry. Interestingly, the antiplatelet effects of ML355 were reversed after exposure to high concentrations of thrombin in vitro. Ex vivo flow chamber assays confirmed that human platelet adhesion and thrombus formation at arterial shear over collagen were attenuated in whole blood treated with ML355 comparable to aspirin. Oral administration of ML355 in mice showed reasonable plasma drug levels by pharmacokinetic assessment. ML355 treatment impaired thrombus growth and vessel occlusion in FeCl-induced mesenteric and laser-induced cremaster arteriole thrombosis models in mice. Importantly, hemostatic plug formation and bleeding after treatment with ML355 was minimal in mice in response to laser ablation on the saphenous vein or in a cremaster microvasculature laser-induced rupture model.

Conclusions: Our data strongly support 12-LOX as a key determinant of platelet reactivity in vivo, and inhibition of platelet 12-LOX with ML355 may represent a new class of antiplatelet therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620123PMC
http://dx.doi.org/10.1161/ATVBAHA.117.309868DOI Listing

Publication Analysis

Top Keywords

platelet reactivity
12
ml355
9
platelet
9
selective 12-lox
8
12-lox inhibitor
8
inhibitor ml355
8
thrombus formation
8
vessel occlusion
8
vivo thrombosis
8
human platelet
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!