The condition medium of mesenchymal stem cells promotes proliferation, adhesion and neuronal differentiation of retinal progenitor cells.

Neurosci Lett

College of Basic Medicine, HE University, Shenyang, Liaoning Province, People's Republic of China. Electronic address:

Published: September 2017

Retinal progenitor cell is a promising candidate in the treatment of retinal pigmentosa diseases. The limiting factors of stem cell transplantation are the proliferation and differentiation capacities of hRPCs, which may be governed by culture conditions. Previous studies have proved that the secretome of human Umbilical Cord Mesenchymal stem cells (hUCMSCs) and human Adipose derived stem cells (hADSCs), including more active cytokines and neurotrophic factors, have the paracrine potential of enhancing proliferation and differentiation in several cell types. The aim of this study was to investigate whether hRPCs could effectively proliferate, adhere and differentiate towards specific retinal cell types by treating with the condition medium (CM) of hUCMSCs (hUCMSCCM) or hADSCs (hADSCCM). Here, we show that hUCMSCCM or hADSCCM enhances the proliferation rate of the S and G2 phase cells, with an upregulation of Ki67 expression. Moreover, the upregulation expression of NF, Recoverin and Rhodopsin indicates that specialized retinal cells including ganglion cells and photoreceptors are favored over hRPCs differentiation due to hUCMSCCM or hADSCCM. Under FBS induced differentiation conditions, hRPCs treated with hUCMSCCM or hADSCCM increase the expression of retinal neuron and photoreceptor specific markers. These results suggest that hUCMSCCM and hADSCCM can stimulate the hRPC proliferation, promote its adherence and support hRPC neuronal and photoreceptor differentiation. These findings may provide a new strategy to improve the viability of hRPCs and photoreceptor differentiation capacities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2017.07.053DOI Listing

Publication Analysis

Top Keywords

hucmsccm hadsccm
16
stem cells
12
condition medium
8
mesenchymal stem
8
retinal progenitor
8
proliferation differentiation
8
differentiation capacities
8
cell types
8
photoreceptor differentiation
8
cells
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!