Synaptic dysfunction in amygdala in intellectual disorder models.

Prog Neuropsychopharmacol Biol Psychiatry

Team "synapse in cognition", UMR 5297, University of Bordeaux, Bordeaux, France; Team "synapse in cognition", UMR 5297, Centre National de la recherche scientifique, Bordeaux, France. Electronic address:

Published: June 2018

AI Article Synopsis

  • The amygdala, a key area for processing emotions and fear responses, has been extensively researched for its synaptic connectivity and behavior-related functions in animals, particularly in response to threats.
  • Studies show that different sub-nuclei of the amygdala are crucial for eliciting behaviors like freezing or escaping through learned fear responses in models like mice.
  • Many genes linked to intellectual disabilities in humans have been investigated using rodent models to explore how mutations can disrupt social behaviors and learning related to fear, though the role of these genes in amygdala synaptic function remains underexplored.

Article Abstract

The amygdala is a part of the limbic circuit that has been extensively studied in terms of synaptic connectivity, plasticity and cellular organization since decades (Ehrlich et al., 2009; Ledoux, 2000; Maren, 2001). Amygdala sub-nuclei, including lateral, basolateral and central amygdala appear now as "hubs" providing in parallel and in series neuronal processing enabling the animal to elicit freezing or escaping behavior in response to external threats. In rodents, these behaviors are easily observed and quantified following associative fear conditioning. Thus, studies on amygdala circuit in association with threat/fear behavior became very popular in laboratories and are often used among other behavioral tests to evaluate learning abilities of mouse models for various neuropsychiatric conditions including genetically encoded intellectual disabilities (ID). Yet, more than 100 human X-linked genes - and several hundreds of autosomal genes - have been associated with ID in humans. These mutations introduced in mice can generate social deficits, anxiety dysregulations and fear learning impairments (McNaughton et al., 2008; Houbaert et al., 2013; Jayachandran et al., 2014; Zhang et al., 2015). Noteworthy, a significant proportion of the coded ID gene products are synaptic proteins. It is postulated that the loss of function of these proteins could destabilize neuronal circuits by global changes of the balance between inhibitory and excitatory drives onto neurons. However, whereas amygdala related behavioral deficits are commonly observed in ID models, the role of most of these ID-genes in synaptic function and plasticity in the amygdala are only sparsely studied. We will here discuss some of the concepts that emerged from amygdala-targeted studies examining the role of syndromic and non-syndromic ID genes in fear-related behaviors and/or synaptic function. Along describing these cases, we will discuss how synaptic deficits observed in amygdala circuits could impact memory formation and expression of conditioned fear.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2017.07.028DOI Listing

Publication Analysis

Top Keywords

amygdala
8
synaptic function
8
will discuss
8
synaptic
6
synaptic dysfunction
4
dysfunction amygdala
4
amygdala intellectual
4
intellectual disorder
4
disorder models
4
models amygdala
4

Similar Publications

Nesfatin-1 Neurons in the Ventral Premammillary Nucleus Integrate Metabolic and Reproductive Signals in Male Rats.

Int J Mol Sci

January 2025

Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary.

The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis.

View Article and Find Full Text PDF

Cognitive impairment affects memory, reasoning, and problem-solving, with early detection being critical for effective management. The amygdala, a key structure in emotional processing and memory, may play a pivotal role in detecting cognitive decline. This study examines differences in amygdala nuclei volumes in patients with varying levels of cognitive performance to evaluate its potential as a biomarker.

View Article and Find Full Text PDF

Transient Receptor Potential Melastatin 8 (TRPM8) is a non-selective, Ca-permeable cation channel involved in thermoregulation and other physiological processes, such as basal tear secretion, cell differentiation, and insulin homeostasis. The activation and deactivation of TRPM8 occur through genetic modifications, channel interactions, and signaling cascades. Recent evidence suggests a significant role of TRPM8 in the hypothalamus and amygdala related to pain sensation and sexual behavior.

View Article and Find Full Text PDF

Objectives: The current study aimed to investigate the structural and functional connectivity of the subregions of the amygdala in children with Attention Deficit/Hyperactivity Disorder (ADHD) only or comorbid with Oppositional Defiant Disorder (ODD).

Methods: A total of 354 children with ADHD-only, 161 children with ADHD and ODD (ADHD + ODD), and 100 healthy controls were enrolled. The Child Behavior Checklist (CBCL) and the Behavior Rating Inventory of Executive Function (BRIEF) were filled out by caregivers.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a highly heterogeneous disorder, with notable variations among cases in structural brain abnormalities. To address this heterogeneity, our study aimed to delineate OCD subtypes based on individualized gray matter morphological differences. We recruited 100 untreated, first-episode OCD patients and 106 healthy controls for structural imaging scans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!