The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456969PMC
http://dx.doi.org/10.3390/ma9121029DOI Listing

Publication Analysis

Top Keywords

mortars recycled
12
recycled ceramic
12
ceramic aggregates
8
recycled mortars
8
elastic ranges
8
ranges failure
8
failure maximum
8
recycled
7
mortars
6
experimental study
4

Similar Publications

Managing basalt rock cutting waste in an environmentally responsible manner is crucial to mitigate its negative impacts and protect both the environment and human health. Recycling basalt rock cutting waste in geopolymer applications offers multiple environmental, economic, and performance benefits, making it a promising approach for sustainable construction practices. For this purpose, this study concerns about the performance of fiber-reinforced basalt rock-cutting waste-based geopolymer composites at high temperatures up to 1000 °C.

View Article and Find Full Text PDF

The evaluation of the mechanical performance of fly ash-recycled mortar (FARM) is a necessary condition to ensure the efficient utilization of recycled fine aggregates. This article describes the design of nine mix proportions of FARMs with a low water/cement ratio and screens six mix proportions with reasonable flowability. The compressive strengths of FARMs were tested, and the influence of the water/cement ratio (/) and age on the compressive strength was analyzed.

View Article and Find Full Text PDF

Unveiling the Potential of Civil Briquette Furnace Slag as a Silico-Aluminon Additive in Alkali-Activated Materials.

Materials (Basel)

December 2024

Zhongtu Dadi International Architectural Design Co., Ltd., Shijiazhuang 050000, China.

Civil briquette furnace slag (FS), as a type of industrial solid waste, is not currently being recycled as a resource by the building materials industry. This study focuses on the potential of FS in the formulation of alkali-activated materials (AAMs) compared with calcium carbide slag (CS). This study encompasses three distinct AAM systems: alkali-activated fly ash alone (AAFA), fly ash-slag powder blends (AAFB), and slag powder alone (AABS).

View Article and Find Full Text PDF

In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.

View Article and Find Full Text PDF

The availability of industrially used supplementary cementitious materials (SCMs, e.g., fly ash) decreases due to the rise in renewable energy sources and recycling technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!