Intravesical instillation is the main therapy for bladder cancer and interstitial cystitis. However, most drug solutions are eliminated from bladder after the first voiding of urine. To solve this problem, we proposed a floating hydrogel with self-generating micro-bubbles as a new delivery system. It floated in urine, avoiding the urinary obstruction and bladder irritation that ordinary hydrogels caused. In this study, we abandoned traditional gas-producing method like chemical decomposition of NaHCO₃, and used the foamability of Poloxamer 407 (P407) instead. Through simple shaking (just like shaking SonoVue for contrast-enhanced ultrasound in clinical), the P407 solution will "lock" many micro-bubbles and float in urine as quickly and steadily as other gas producing materials. In vivo release experiments showed that drug was released continually from hydrogel for 10 h during the erosion process. Thus, the residence time of drug in bladder was prolonged and drug efficacy was improved. In vivo efficacy study using rabbit acute bladder injury model showed that prolonged drug residence time in bladder increased the efficiency of heparin in the protection of bladder mucosal permeability. Therefore, our floating hydrogel system with self-generating micro-bubbles was single-component, simply prepared and efficacy enhancing, successfully exempting users from worries on safety and clinical efficiency from bench to bedside.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456973PMC
http://dx.doi.org/10.3390/ma9121005DOI Listing

Publication Analysis

Top Keywords

floating hydrogel
12
self-generating micro-bubbles
12
hydrogel self-generating
8
intravesical instillation
8
residence time
8
prolonged drug
8
bladder
7
drug
5
micro-bubbles
4
micro-bubbles intravesical
4

Similar Publications

Traditional natural polysaccharide-based hydrogels, when used as drug carriers, often struggle to maintain long-term stability in the extremely harsh gastric environment. This results in unstable drug release and significant challenges in bioavailability. To address this issue, this study utilized inexpensive and safe natural polysaccharides-chitosan (CS) and high methoxyl pectin (HM)-as raw materials.

View Article and Find Full Text PDF

Photocatalysis has attracted more and more attention as a possible solution to environmental, water, and energy crises. Although some photocatalytic materials have already proven to perform well, there are still some problems that should be solved for the broad commercialization of photocatalysis-based technologies. Among them, cheap and easy recycling, as well as stability issues, should be addressed.

View Article and Find Full Text PDF

Scaffolding catalytic reactions within porous materials is a powerful strategy to enhance the reaction rates of multicatalytic systems. However, it remains challenging to develop materials with high porosity, high diversity of functional groups within the pores, and guest-adaptive tunability. Furthermore, it is challenging to capture large catalysts such as enzymes within porous materials.

View Article and Find Full Text PDF

Advancing mechanical testing of biological tissues and hydrogels: A buoy-based approach.

J Biomech

January 2025

Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder 1111 Engineering Dr, Boulder, CO 80309, United States. Electronic address:

Quantifying the material properties of tissues and hydrogels aids in the development of biomedical applications through better understanding of the mechanics and mechanobiological principles at play. This study introduces a mechanical testing platform designed to address challenges in measuring mm-scale tissue and hydrogel material properties. Using a floating buoy design, the platform enables horizontal submerged tensile testing with non-submersible load cells.

View Article and Find Full Text PDF

Gastro retentive drug delivery systems (GRDDS) have gained immense popularity as they reduce dosing frequency, improve bioavailability, and enhance patient compliance. Herein, a plant-based, controlled swelling, and pH-sensitive GRDDS based on Aloe vera hydrogel and cellulose was developed for the sustained release of levofloxacin (LEVO). The properties of five various floating tablet formulations including dynamic swelling, pH-responsiveness, hardness, friability, drug release, and buoyant time were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!