Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Copper iodide (CuI) thin films were grown on Si(100) substrates using a copper film iodination reaction method. It was found that γ-CuI films have a uniform and dense microstructure with (111)-orientation. Transmission spectra indicated that CuI thin films have an average transmittance of about 60% in the visible range and the optical band gap is 3.01 eV. By checking the effect of the thickness of the Cu films and annealing condition on the photoluminescence (PL) character of CuI films, the luminescence mechanisms of CuI have been comprehensively analyzed, and the origin of different PL emissions are proposed with Cu vacancy and iodine vacancy as defect levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456966 | PMC |
http://dx.doi.org/10.3390/ma9120990 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!