A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optoelectronic Properties and the Electrical Stability of Ga-Doped ZnO Thin Films Prepared via Radio Frequency Sputtering. | LitMetric

In this work, Ga-doped ZnO (GZO) thin films were deposited via radio frequency sputtering at room temperature. The influence of the Ga content on the film's optoelectronic properties as well as the film's electrical stability were investigated. The results showed that the film's crystallinity degraded with increasing Ga content. The film's conductivity was first enhanced due to the replacement of Zn by Ga before decreasing due to the separation of neutralized gallium atoms from the ZnO lattice. When the Ga content increased to 15.52 at %, the film's conductivity improved again. Furthermore, all films presented an average transmittance exceeding 80% in the visible region. Regarding the film's electrical stability, GZO thermally treated below 200 °C exhibited no significant deterioration in electrical properties, but such treatment over 200 °C greatly reduced the film's conductivity. In normal atmospheric conditions, the conductivity of GZO films remained very stable at ambient temperature for more than 240 days.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457010PMC
http://dx.doi.org/10.3390/ma9120987DOI Listing

Publication Analysis

Top Keywords

electrical stability
12
film's conductivity
12
optoelectronic properties
8
ga-doped zno
8
thin films
8
radio frequency
8
frequency sputtering
8
content film's
8
film's electrical
8
200 °c
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!