Mechanical Properties and In Vitro Degradation of Sputtered Biodegradable Fe-Au Foils.

Materials (Basel)

Chair for Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel, Kiel 24143, Germany.

Published: November 2016

Iron-based materials proved being a viable candidate material for biodegradable implants. Magnetron sputtering combined with UV-lithography offers the possibility to fabricate structured, freestanding foils of iron-based alloys and even composites with non-solvable elements. In order to accelerate the degradation speed and enhance the mechanical properties, the technique was used to fabricate Fe-Au multilayer foils. The foils were annealed after the deposition to form a homogeneous microstructure with fine Au precipitates. The characterization of the mechanical properties was done by uniaxial tensile tests. The degradation behavior was analyzed by electrochemical tests and immersion tests under in vitro conditions. Due to the noble Au precipitates it was possible to achieve high tensile strengths between 550 and 800 MPa depending on the Au content and heat treatment. Furthermore, the Fe-Au foils showed a significantly accelerated corrosion compared to pure iron samples. The high mechanical strength is close to the properties of SS316L steel. In combination with the accelerated degradation rate, sputtered Fe-Au foils showed promising properties for use as iron-based, biodegradable implants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457263PMC
http://dx.doi.org/10.3390/ma9110928DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
fe-au foils
12
foils iron-based
8
biodegradable implants
8
foils
6
mechanical
4
properties vitro
4
degradation
4
vitro degradation
4
degradation sputtered
4

Similar Publications

Disappearing and reappearing of structure order in colloidal photonic crystals.

Phys Chem Chem Phys

January 2025

State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Mechanoresponsive colloidal photonic crystals embedded in elastic solid matrices exhibit tunable optical properties under mechanical force, showing great potential for various applications. However, the response of colloidal crystals embedded in a liquid matrix remains largely unexplored. In this study, we investigate the structural and optical transitions of colloidal crystals composed of particles suspended in a liquid oligomer under pressing and shear forces.

View Article and Find Full Text PDF

Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury.

J Mater Sci Mater Med

January 2025

Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.

Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.

View Article and Find Full Text PDF

DFT study of the binary intermetallic compound NdMn in different polytypic phases.

J Mol Model

January 2025

Department of Physics, University of Malakand, Chakdara, Dir (Lower), 18800, KP, Pakistan.

Context: The structural stability, ground state magnetic order, electronic, elastic and thermoelectric properties of NdMn in the C15, C14 and C36 polytypic phases is investigated. The magnetic phase optimization and magnetic susceptibility reveal that NdMn is antiferromagnetic (AFM) in C36 phase; and paramagnetic (PM) in C14 and C15 phases respectively. The band profiles and electrical resistivity show the metallic nature in all these polytypic phases and reveal that the C36 phase possesses smaller resistivity.

View Article and Find Full Text PDF

Deep Learning of CYP450 Binding of Small Molecules by Quantum Information.

J Chem Inf Model

January 2025

Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States.

Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions.

View Article and Find Full Text PDF

Hydration Effects Driving Network Remodeling in Hydrogels during Cyclic Loading.

ACS Macro Lett

January 2025

Materials Science and Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

In complex networks and fluids such as the extracellular matrix, the mechanical properties are substantially affected by the movement of polymers both part of and entrapped in the network. As many cells are sensitive to the mechanical remodeling of their surroundings, it is important to appreciate how entrapped polymers may inhibit or facilitate remodeling in the network. Here, we explore a molecular-level understanding of network remodeling in a complex hydrogel environment through successive compressive loading and the role that noninteracting polymers may play in a dynamic network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!