Conventional oil sewage treatment methods can achieve satisfactory removal efficiency, but energy consumption problems during the process of oil sewage treatment are worth attention. The integration of a constructed wetland reactor and a microbial fuel cell reactor (CW-MFC) to treat oil-contaminated wastewater, compared with a microbial fuel cell reactor (MFC) alone and a constructed wetland reactor (CW) alone, was explored in this research. Performances of the three reactors including chemical oxygen demand (COD), oil removal, and output voltage generation were continuously monitored. The COD removals of three reactors were between 73% and 75%, and oil removals were over 95.7%. Compared with MFC, the CW-MFC with a MnO₂ modified cathode produced higher power density and output voltage. Maximum power densities of CW-MFC and MFC were 3868 mW/m³ (102 mW/m²) and 3044 mW/m³ (80 mW/m²), respectively. The plants in CW-MFC play a positive role for reactor cathode potential. Both plants and cathode modification can improve reactor performance of electricity generation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457253 | PMC |
http://dx.doi.org/10.3390/ma9110885 | DOI Listing |
Environ Sci Technol
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Concern over nanoplastic contamination of wetland ecosystems has been increasing. However, little is known about the effect of photoaging on the distribution and biological response of the nanoplastics. Here, palladium-labeled polystyrene nanoplastics (PS-Pd NPs) at 0.
View Article and Find Full Text PDFSci Rep
January 2025
School of Geography and Environment, Liaocheng University, Liaocheng, 252059, Shandong, China.
The complex topography of the mountain cities leads to uneven distribution of land resources. Currently, available studies mainly focuse on land use and landscape patterns (LU and LP) in plains or plateaus. Thus, it is necessary to carry out an analysis of the drivers of changes in LU and LP in mountain cities.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India.
Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Core Botanical Gardens/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
In constructed wetlands (CWs) with multiple plant communities, population structure may change over time and these variations may ultimately influence water quality. However, in CWs with multiple plant communities, it is still unclear how population structure may change over time and how these variations ultimately influence water quality. Here, we established a CW featuring multiple plant species within a polder to investigate the variation in plant population structure and wastewater treatment effect for drainage water over the course of one year.
View Article and Find Full Text PDFMicroorganisms
January 2025
Institute of Natural Resources and Ecology, Heilongjiang Academy of Science, Harbin 150040, China.
Increasing nitrogen (N) addition induces soil nutrient imbalances and is recognized as a major regulator of soil microbial communities. However, how soil bacterial abundance, diversity, and community composition respond to exogenous N addition in nutrient-poor and generally N-limited regions remains understudied. In this study, we investigated the effects of short-term exogenous N additions on soil bacterial communities using quantitative polymerase chain reaction (PCR) and Illumina Miseq sequencing in an in situ N addition field experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!