The tool coating and cooling strategy are two key factors when machining difficult-to-cut materials such as titanium alloy. In this paper, diamond coating was deposited on a commercial carbide insert as an attempt to increase the machinability of TC11 alloy during the turning process. An uncoated carbide insert and a commercial Al₂O₃/TiAlN-coated tool were also tested as a comparison. Furthermore, MQL was applied to improve the cutting condition. Cutting performances were analyzed by cutting force, cutting temperate and surface roughness measurements. Tool wears and tool lives were evaluated to find a good matchup between the tool coating and cooling strategy. According to the results, using MQL can slightly reduce the cutting force. By applying MQL, cutting temperatures and tool wears were reduced by a great amount. Besides, MQL can affect the tool wear mechanism and tool failure modes. The tool life of an Al₂O₃/TiAlN-coated tool can be prolonged by 88.4% under the MQL condition. Diamond-coated tools can obtain a good surface finish when cutting parameters and lubrication strategies are properly chosen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456618PMC
http://dx.doi.org/10.3390/ma9100804DOI Listing

Publication Analysis

Top Keywords

tool
10
titanium alloy
8
tool coating
8
coating cooling
8
cooling strategy
8
carbide insert
8
al₂o₃/tialn-coated tool
8
cutting force
8
tool wears
8
cutting
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!