LiMnFePO₄/C material has been synthesized through a facile solid-state reaction under the condition of carbon coating, using solvothermal-prepared LiMnPO₄ and LiFePO₄ as precursors and sucrose as a carbon resource. XRD and element distribution analysis reveal completed solid-state reaction of precursors. LiMnFePO₄/C composites inherit the morphology of precursors after heat treatment without obvious agglomeration and size increase. LiMnFePO₄ solid solution forms at low temperature around 350 °C, and Mn/Fe diffuse completely within 1 h at 650 °C. The LiMnFePO₄/C ( < 0.8) composite exhibits a high-discharge capacity of over 120 mAh·g (500 Wh·kg) at low C-rates. This paves a way to synthesize the crystal-optimized LiMnFePO₄/C materials for high performance Li-ion batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457063 | PMC |
http://dx.doi.org/10.3390/ma9090766 | DOI Listing |
Inorg Chem
January 2025
Institute of Inorganic Chemistry, RWTH Aachen University, 52056 Aachen, Germany.
The ternary transition-metal cyanamide MnCr(NCN) was synthesized by a solid-state metathesis reaction between MnCl, CrCl, and ZnNCN. Powder X-ray diffraction reveals that MnCr(NCN) adopts an orthorhombic [NiAs]-derived structure with symmetry, featuring a hexagonally close-packed array of NCN with metal cations in 3/4 of the octahedral interstitial holes. The question of cation order was addressed via the combinatorial use of X-ray powder diffraction, neutron powder diffraction, electron diffraction, and HAADF-STEM measurements.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.
High-entropy metal oxides (HEOs) have recently received growing attention for broad energy conversion and storage applications due to their tunable properties. HEOs typically involve the combination of multiple metal cations in a single oxide lattice, thus bringing distinctive structures, controllable elemental composition, and tunable functional properties. Many synthesis methods for HEOs have been reported, such as solid-state reactions and carbon thermal shock methods.
View Article and Find Full Text PDFAcc Mater Res
January 2025
Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
Methane (CH), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH has a low energy density of only 36 kJ L under ambient conditions, which is significantly lower than that of gasoline (. 34 MJ L).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
The reduction of CO mediated by transition metals has garnered significant interest, yet little is known about the reduction of CO using f-element compounds. Herein, the reduction of CO to CO by tetravalent uranium (U) compound UO is investigated via matrix isolation infrared spectroscopy and quantum chemical study. Our results reveal that a stable carbonate intermediate OUCO () can be prepared at low temperatures (4-12 K).
View Article and Find Full Text PDFACS Nano
January 2025
Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.
Improving interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is vital for developing high-performance all-solid-state batteries (ASSBs), with compatibility issues among the cell components representing a major challenge. CAM surface coating with a chemically inert ion conductor is a promising approach to suppress side reactions occurring at the cathode interfaces. Another strategy to mitigate mechanical degradation involves utilizing single-crystalline particle morphologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!