Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips.

Materials (Basel)

Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, 135# Yaguan Road, Jinnan District, Tianjin 300350, China.

Published: July 2016

Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT). However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30-35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM). This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456888PMC
http://dx.doi.org/10.3390/ma9070564DOI Listing

Publication Analysis

Top Keywords

nanosilver paste
12
bonding igbt
12
igbt chips
12
rapid sintered
8
power chips
8
electrical performance
8
igbt
7
paste
6
chips
5
bonding
5

Similar Publications

Chip bonding, an essential process in power semiconductor device packaging, commonly includes welding and nano-silver sintering. Currently, most of the research on chip bonding technology focuses on the thermal stress analysis of tin-lead solder and nano-silver pressure-assisted sintering, whereas research on the thermal stress analysis of the nano-silver pressureless sintering process is more limited. In this study, the pressureless sintering process of nano-silver was studied using finite element software, with nano-silver as an interconnect material.

View Article and Find Full Text PDF

Addressing the intertwined challenges of antimicrobial resistance and impaired wound healing in diabetic patients, an oil/water emulsion-based nano-ointment integrating phenylpropanoids-Eugenol and Cinnamaldehyde-with positively-charged silver nanoparticles was synthesized. The process began with the synthesis and characterization of nano-silver, aimed at ensuring the effectiveness and safety of the nanoparticles in biological applications. Subsequent experiments determined the minimum inhibitory concentration (MIC) against pathogens such as Streptococcus aureus, Pseudomonas aeruginosa and Candida albicans.

View Article and Find Full Text PDF

Aim: Assessment of contemporary canal medicaments (Triple antibiotic paste (TAP), Bio-C Temp, and Nano silver gel activated by visible blue light on the dentin microhardness (MH) and push-out bond strength (PBS) of AH plus endodontic sealer.

Method: Sixty extracted premolars were obtained and decontaminated. Canal cleaning and shaping were performed.

View Article and Find Full Text PDF

Effect of Solder Layer Void Damage on the Temperature of IGBT Modules.

Micromachines (Basel)

June 2023

Jiangsu Key Laboratory of ASIC Design, Nantong University, Nantong 226019, China.

Solder layer void is one of the main failure causes of power semiconductor devices, which will seriously affect the reliability of the devices. In this study, a 3D model of IGBT (Insulated Gate Bipolar Transistor) packaging was built by DesignModeler. Based on ANSYS Workbench, the influence of void size, location, solder layer type, and thickness on the temperature distribution of the IGBT module was simulated.

View Article and Find Full Text PDF

Reliability Analysis of Flip-Chip Packaging GaN Chip with Nano-Silver Solder BUMP.

Micromachines (Basel)

June 2023

Jiangsu Key Laboratory of ASIC Design, School of Information Science and Technology, Nantong University, Nantong 226019, China.

Gallium nitride (GaN) power devices have many benefits, including high power density, small footprint, high operating voltage, and excellent power gain capability. However, in contrast to silicon carbide (SiC), its performance and reliability can be negatively impacted by its low thermal conductivity, which can cause overheating. Hence, it is necessary to provide a reliable and workable thermal management model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!