Significant drying shrinkage is one of the main limitations for the wider utilization of alkali-activated slag (AAS). Few previous works revealed that it is possible to reduce AAS drying shrinkage by the use of shrinkage-reducing admixtures (SRAs). However, these studies were mainly focused on SRA based on polypropylene glycol, while as it is shown in this paper, the behavior of SRA based on 2-methyl-2,4-pentanediol can be significantly different. While 0.25% and 0.50% had only a minor effect on the AAS properties, 1.0% of this SRA reduced the drying shrinkage of waterglass-activated slag mortar by more than 80%, but it greatly reduced early strengths simultaneously. This feature was further studied by isothermal calorimetry, mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). Calorimetric experiments showed that 1% of SRA modified the second peak of the pre-induction period and delayed the maximum of the main hydration peak by several days, which corresponds well with observed strength development as well as with the MIP and SEM results. These observations proved the certain incompatibility of SRA with the studied AAS system, because the drying shrinkage reduction was induced by the strong retardation of hydration, resulting in a coarsening of the pore structure rather than the proper function of the SRA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456806PMC
http://dx.doi.org/10.3390/ma9060462DOI Listing

Publication Analysis

Top Keywords

drying shrinkage
16
shrinkage-reducing admixtures
8
alkali-activated slag
8
sra based
8
sra
6
issues shrinkage-reducing
4
admixtures application
4
application alkali-activated
4
slag systems
4
drying
4

Similar Publications

Linking sap flow and tree water deficit in an unmanaged, mixed beech forest during the summer drought 2022.

Plant Biol (Stuttg)

December 2024

Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany.

Temperate mixed forests are currently experiencing severe drought conditions and face increased risk of degradation. However, it remains unclear how critical tree physiological functions such as sap flow density (SFD) and tree water deficit (TWD, defined as reversible stem shrinkage when water is depleted), respond to extreme environmental conditions and how they interact under dry conditions. We monitored SFD and TWD of three co-occurring European tree species (Fagus sylvatica, Fraxinus excelsior and Acer pseudoplatanus) in dry conditions, using high temporal resolution sap flow, dendrometer, and environmental measurements.

View Article and Find Full Text PDF

This study aimed to determine optimal washing and drying methods for maintaining the functionality of silver-coated conductive knitted fabrics, commonly used in wearable smart products. By investigating changes in the physical, chemical, and electrical properties of these fabrics under various care conditions, we sought to provide recommendations for their proper maintenance. Results showed that mechanical friction during washing, combined with the chemical effect of detergent and the effects of machine drying, led to peeling and oxidation of the silver layer, resulting in changes to the fabric's appearance, color and increased surface resistance.

View Article and Find Full Text PDF

Air-Drying for Rapid Manufacture of Flexible Aramid Nanofiber Aerogel Fibers with Robust Mechanical Properties and Thermal Insulation in Harsh Environments.

Small

December 2024

State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China.

Aerogel fibers uniting characteristics of both aerogels (lightweight and porosity) and fibers (flexibility and wearability) exhibit a great potential for the production of the next generation of thermal protection textiles; still, the complex drying procedures and mechanical brittleness remain the main obstacles toward further exploitation. Herein, flexible and robust aramid nanofiber aerogel fibers (ANAFs) are scalably prepared by continuous wet-spinning coupled with fast air-drying. This synthesis involves calcium ions (Ca⁺) cross-linking and solvent displacement by low surface tension solvents, to enhance skeleton strength and reduce the capillary force during evaporation, respectively, thus minimizing shrinkage to 29.

View Article and Find Full Text PDF

The quality and flavor of tea leaves are significantly influenced by chemical composition, with the content of free amino acids serving as a key indicator for assessing the quality of Tencha. Accurately and quickly measuring free amino acids during tea processing is crucial for monitoring and optimizing production processes. However, traditional chemical analysis methods are often time-consuming and costly, limiting their application in real-time quality control.

View Article and Find Full Text PDF

Dynamic NMR Relaxometry as a Straightforward Measurement of Concentration Variations in Colloidal Gels.

Langmuir

December 2024

Laboratoire Navier (Ecole Nationale des Ponts et Chaussées, Univ. Gustave Eiffel, CNRS), Champs sur Marne 77420, France.

We show that dynamic NMR relaxometry allows one to probe the particle size or the concentration evolution over time in homogeneous colloidal suspensions or the concentration in different regions of heterogeneous suspensions, up to large volume fractions. We first demonstrate that the NMR transverse relaxation time is independent of the gel structure at the particle scale so that it only slightly varies during the gelation of a colloidal suspension. The evolution over time of the NMR transverse relaxation time during gel drying and its analysis with the help of the fast-exchange assumption extended to a partially saturated medium then allowed us to identify three successive regimes: homogeneous shrinkage, desaturation, and molecular film regime.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!