Computational studies on the evaluation of bone status in cases of pathologies have gained significant interest in recent years. This work presents a parametric and systematic numerical study on ultrasound propagation in cortical bone models to investigate the effect of changes in cortical porosity and the occurrence of large basic multicellular units, simply called non-refilled resorption lacunae (RL), on the velocity of the first arriving signal (FAS). Two-dimensional geometries of cortical bone are established for various microstructural models mimicking normal and pathological tissue states. Emphasis is given on the detection of RL formation which may provoke the thinning of the cortical cortex and the increase of porosity at a later stage of the disease. The central excitation frequencies 0.5 and 1 MHz are examined. The proposed configuration consists of one point source and multiple successive receivers in order to calculate the FAS velocity in small propagation paths (local velocity) and derive a variation profile along the cortical surface. It was shown that: (a) the local FAS velocity can capture porosity changes including the occurrence of RL with different number, size and depth of formation; and (b) the excitation frequency 0.5 MHz is more sensitive for the assessment of cortical microstructure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456720 | PMC |
http://dx.doi.org/10.3390/ma9030205 | DOI Listing |
J Biomech Eng
January 2025
Dr. Carl D. and H. Jane Clay Department of Mechanical Engineering, Ohio Northern University, 525 S. Main St, Ada OH 45810.
Evaluating the contribution of microstructure to overall bone strength is tricky since it is difficult to control changes to pore structure in human or animal samples. We developed an open-source program that can generate three-dimensional models of micron-scale cortical bone. These models can be highly customized with a wide array of variable input parameters to allow for generation of samples with high similarity to CT scans of cortical bone or with specific geometric features.
View Article and Find Full Text PDFBone
January 2025
Department of Research and Development, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland. Electronic address:
Osteoarthritis (OA) is associated with sclerosis, a thickening of the subchondral bone plate, yet little is known about bone adaptations around full-thickness cartilage defects in severe knee OA, particularly beneath bone-on-bone wear grooves. This high-resolution micro-computed tomography (microCT) study aimed to quantify subchondral bone microstructure relative to cartilage defect location, distance from the joint space, and groove depth. Ten tibial plateaus with full-thickness cartilage defects were microCT-scanned to determine defect location and size.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Internal Medicine Division, Federal University of Parana (UFPR), Curitiba, PR, Brazil.
Patients with radiographic axial spondyloarthritis (r-axSpA) experience a higher prevalence of fragility fractures, though the pathophysiology of osteoporosis associated with this disease remains poorly understood. The objective of this study was to evaluate the histomorphometric data in r-axSpA patients. Male r-axSpA patients up to 55 years old were enrolled in this cross-sectional study.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
Human long bones exhibit pore size gradients with small pores in the exterior cortical bone and large pores in the interior cancellous bone. However, most current bone tissue engineering (BTE) scaffolds only have homogeneous porous structures that do not resemble the graded architectures of natural bones. Pore-size graded (PSG) scaffolds are attractive for BTE since they can provide biomimicking porous structures that may lead to enhanced bone tissue regeneration.
View Article and Find Full Text PDFBone
December 2024
Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia. Electronic address:
Objectives: Alcoholic bone disease has been recognized in contemporary literature as a systemic effect of chronic ethanol consumption. However, evidence about the specific influence of alcoholic liver cirrhosis (ALC) on mandible bone quality is scarce. The aim of this study was to explore microstructural, compositional, cellular, and mechanical properties of the mandible in ALC individuals compared with a healthy control group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!