Development of Hybrid Surfaces with Tunable Wettability by Selective Surface Modifications.

Materials (Basel)

Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea.

Published: February 2016

Recent advances in micro/nano technology have driven artificial modifications of surface wettability by mimicking biological surfaces, such as superhydrophobic and water-harvesting surfaces. In this study, surface wettability of polycarbonate (PC) films was modified using various surface treatments: micropatterning using ultrasonic imprint lithography, fluorinate silane coating, and electron beam irradiation. To modify surface wettability selectively in a specified region, these three treatments were performed using profiled masks with the corresponding shapes. Various combinations of these treatments were investigated in terms of wettability changes, by measuring contact angle (CA). The semi-hydrophobic PC film (CA: 89.2°) was modified to create a super- hydrophobic state (CA: 155.9°) by virtue of the selective micropatterning and coating. The electron beam irradiation had an opposite effect, reducing the CA (48.2°), so that the irradiated region was modified to create a hydrophilic state. Two combinations of the proposed surface modifications made it possible to have a great difference in CA on a single surface (107.7°), and to have four different wetting states on a single surface. Various water-drop experiments proved that the developed hybrid surfaces were selectively wettable and showed water-collecting capability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456690PMC
http://dx.doi.org/10.3390/ma9030136DOI Listing

Publication Analysis

Top Keywords

surface wettability
12
hybrid surfaces
8
surface
8
surface modifications
8
coating electron
8
electron beam
8
beam irradiation
8
modified create
8
single surface
8
wettability
5

Similar Publications

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

Inspired by the adhesion differences on the surfaces of fresh and dried rose petals, a rose bionic self-cleaning fog collector (RBSC) was designed and prepared to realize a self-driven fog harvesting function. The droplet detachment iteration rate was revealed by the regulating mechanism of the surface adhesion force of the RBSC and the influence of bionic texture parameters, as demonstrated through the fog harvesting experiment and droplet detachment failure analysis. Through the surface adhesion force regulation, the probability of droplet dissipation with the airflow is reduced by increasing the falling droplets' mass, and the single surface fog capture efficiency is up to 740 mg cm h.

View Article and Find Full Text PDF

Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied.

View Article and Find Full Text PDF

Design and Characterization of Novel Polymeric Hydrogels with Protein Carriers for Biomedical Use.

Int J Mol Sci

December 2024

Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland.

Hydrogels are three-dimensional polymeric matrices capable of absorbing significant amounts of water or biological fluids, making them promising candidates for biomedical applications such as drug delivery and wound healing. In this study, novel hydrogels were synthesized using a photopolymerization method and modified with cisplatin-loaded protein carriers, as well as natural extracts of nettle () and chamomile ( L.).

View Article and Find Full Text PDF

Surface Wettability Modeling and Predicting via Artificial Neural Networks.

Materials (Basel)

January 2025

Institute of Mechanical Technology, Poznan University of Technology, 60-965 Poznan, Poland.

Surface wettability, defined by the contact angle, describes the ability of a liquid to spread over, absorb or adhere to a solid surface. Surface wetting analysis is important in many applications, such as lubrication, heat transfer, painting and wherever liquids interact with solid surfaces. The behavior of liquids on surfaces depends mainly on the texture and chemical properties of the surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!