The thermoplastic materials such as acrylonitrile-butadiene-styrene (ABS) and Nylon have large applications in three-dimensional printing of functional/non-functional prototypes. Usually these polymer-based prototypes are lacking in thermal and electrical conductivity. Graphene (Gr) has attracted impressive enthusiasm in the recent past due to its natural mechanical, thermal, and electrical properties. This paper presents the step by step procedure (as a case study) for development of an in-house ABS-Gr blended composite feedstock filament for fused deposition modelling (FDM) applications. The feedstock filament has been prepared by two different methods (mechanical and chemical mixing). For mechanical mixing, a twin screw extrusion (TSE) process has been used, and for chemical mixing, the composite of Gr in an ABS matrix has been set by chemical dissolution, followed by mechanical blending through TSE. Finally, the electrical and thermal conductivity of functional prototypes prepared from composite feedstock filaments have been optimized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578247 | PMC |
http://dx.doi.org/10.3390/ma10080881 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China.
Lead-free ceramic-based dielectric capacitors are critical in electronics and environmental safety. Nevertheless, developing ideal lead-free ceramics with excellent energy storage properties remains a challenging task for practical applications. Herein, the enhanced relaxation behavior and increased breakdown electric field are utilized to realize the high energy storage behavior of (0.
View Article and Find Full Text PDFPLoS One
January 2025
College of Electric Power, Inner Mongolia University of Technology, Hohhot, China.
The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
This study presents the development of a solar-driven thermally regenerative electrochemical cell (STREC) for continuous power generation. Key innovations include dual-function carbon-based electrodes for efficient solar absorption and electrochemical reactions, a transparent and ultrainsulating silica aerogel to maximize solar spectrum transmission while minimizing heat loss, and a compact heat exchanger to recover heat from hot cell streams. Under 1 sun conditions, the STREC achieves a power density of 912.
View Article and Find Full Text PDFACS Nano
January 2025
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China.
Multifunctional materials are accelerating the development of soft electronics with integrated capabilities including wearable physical sensing, efficient thermal management, and high-performance electromagnetic interference shielding. With outstanding mechanical, thermal, and electrical properties, nanocarbon materials offer ample opportunities for designing multifunctional devices with broad applications. Surface and interfacial engineering have emerged as an effective approach to modulate interconnected structures, which may have tunable and synergistic effects for the precise control over mechanical, transport, and electromagnetic properties.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Islamic Republic of Iran.
This study investigates a comprehensive enhancement strategy for photovoltaic (PV) panel efficiency, focusing on increasing electrical output through the integration of parabolic reflectors, advanced cooling mechanisms, and thermoelectric generation. Parabolic reflectors are implemented in the system to maximize solar irradiance on the PV panel's surface, while a specialized cooling system is introduced to regulate temperature distribution across the silicon layer. This cooling system consists of a finned duct filled with paraffin (RT35HC) and enhanced with SWCNT nanoparticles, which improve the thermal properties of the paraffin, facilitating more effective heat dissipation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!