Materials (Basel)
Additives and Chemistry Group, Advanced Fibers, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
Published: July 2017
Organophosphorus compounds containing P-C bonds are increasingly developed as flame retardant additives due to their excellent thermal and hydrolytic stability and ease of synthesis. The latest development (since 2010) in organophosphorus flame retardants containing P-C bonds summarized in this review. In this review, we have broadly classified such phosphorus compounds based on the carbon unit linked to the phosphorus atom i.e., could be a part of either an aliphatic or an aromatic unit. We have only considered those published literature where a P-C bond was created as a part of synthetic strategy to make either an intermediate or a final organophosphorus compound with an aim to use it as a flame retardant. General synthetic strategies to create P-C bonds are briefly discussed. Most popular synthetic strategies used for developing P-C containing phosphorus based flame retardants include Michael addition, Michaelis-Arbuzov, Friedels-Crafts and Grignard reactions. In general, most flame retardant derivatives discussed in this review have been prepared via a one- to two-step synthetic strategy with relatively high yields greater than 80%. Specific examples of P-C containing flame retardants synthesized via suitable synthetic strategy and their applications on various polymer systems are described in detail. Aliphatic phosphorus compounds being liquids or low melting solids are generally applied in polymers via coatings (cellulose) or are incorporated in the bulk of the polymers (epoxy, polyurethanes) during their polymerization as reactive or non-reactive additives. Substituents on the P atoms and the chemistry of the polymer matrix greatly influence the flame retardant behavior of these compounds (condensed phase vs. the gas phase). Recently, aromatic DOPO based phosphinate flame retardants have been developed with relatively higher thermal stabilities (>250 °C). Such compounds have potential as flame retardants for high temperature processable polymers such as polyesters and polyamides. A vast variety of P-C bond containing efficient flame retardants are being developed; however, further work in terms of their economical synthetic methods, detailed impact on mechanical properties and processability, long term durability and their toxicity and environmental impact is much needed for their potential commercial exploitations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551827 | PMC |
http://dx.doi.org/10.3390/ma10070784 | DOI Listing |
Environ Pollut
January 2025
Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China. Electronic address:
Decabromodiphenyl ethane (DBDPE) is one of the most extensively used novel brominated flame retardants, and it has been frequently detected in the global environment. Although organisms encounter various pollutants through the intestine, the toxicity effects of DBDPE exposure on the intestine and the potential mechanisms remain unclear. Here, by morphological observation, histopathology, high-throughput sequencing, and transcriptomics methods, we evaluated the effects of environmental (0.
View Article and Find Full Text PDFBMC Genomics
January 2025
Laboratory for Marine Ecology and Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
Background: Tris (2-chloroethyl) phosphate (TCEP), a widely used flame retardant, is widespread in the environment and potentially harmful to organisms. However, the specific mechanisms of TCEP-induced neurological and reproductive toxicity in fish are largely unknown. Turbot (Scophthalmus maximus) is cultivated on a large scale, and the emergence of pollutants with endocrine disrupting effects seriously affects its economic benefits.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Social Medicine, School of Health Management, Harbin Medical University, Harbin, 150081, China.
Background: Accumulating research highlights that exposure to serum brominated flame retardants (BFRs) may elevate health risks. The effects of serum BFRs, both alone and in combination, on obstructive sleep apnea syndrome (OSAS) have not been thoroughly studied. Our main goal was to examine the association between individual and mixtures of serum BFRs and OSAS risk.
View Article and Find Full Text PDFWater Res X
May 2025
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.
View Article and Find Full Text PDFSci Total Environ
January 2025
International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China. Electronic address:
Although the concept of bioaccumulation for novel brominated flame retardants (NBFRs) is clear, the process and interfering factors of bioaccumulation are still not fully understood. The present study comprehensively evaluated the occurrence, transfer and interfering factors of NBFRs in a marine food web to provide new thought and perspective for the bioaccumulation of these compounds. The occurrence of 17 NBFRs were determined from 8 water, 8 sediment and 303 organism samples collected from Dalian Bay, China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.