Bias Stress and Temperature Impact on InGaZnO TFTs and Circuits.

Materials (Basel)

CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL) and CEMOP/UNINOVA, 2829-516 Caparica, Portugal.

Published: June 2017

This paper focuses on the analysis of InGaZnO thin-film transistors (TFTs) and circuits under the influence of different temperatures and bias stress, shedding light into their robustness when used in real-world applications. For temperature-dependent measurements, a temperature range of 15 to 85 °C was considered. In case of bias stress, both gate and drain bias were applied for 60 min. Though isolated transistors show a variation of drain current as high as 56% and 172% during bias voltage and temperature stress, the employed circuits were able to counteract it. Inverters and two-TFT current mirrors following simple circuit topologies showed a gain variation below 8%, while the improved robustness of a cascode current mirror design is proven by showing a gain variation less than 5%. The demonstration that the proper selection of TFT materials and circuit topologies results in robust operation of oxide electronics under different stress conditions and over a reasonable range of temperatures proves that the technology is suitable for applications such as smart food packaging and wearables.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554061PMC
http://dx.doi.org/10.3390/ma10060680DOI Listing

Publication Analysis

Top Keywords

bias stress
12
tfts circuits
8
circuit topologies
8
gain variation
8
bias
5
stress temperature
4
temperature impact
4
impact ingazno
4
ingazno tfts
4
circuits paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!