Ecotoxicity of Concretes with Granulated Slag from Gray Iron Pilot Production as Filler.

Materials (Basel)

Department of Environmental Engineering, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen 960 01, Slovakia.

Published: May 2017

This paper focuses on research concerning the ecotoxicological properties of granulated slag from the pilot production of gray iron with red mud addition and concrete composites with the application of this slag. Red mud is a hazardous waste generated in the production of aluminium oxide. Negative ecotoxicological tests are, therefore, one of the basic prerequisites for the ability to use granulated slag from gray iron pilot production. Granulated slag and concrete composite samples with various ratios of granulated slag have been subject to ecotoxicity tests: determining root growth inhibition in the highly-cultivated plant , and determining acute toxicity in . The results of ecotoxicological testing of granulated slag from gray iron standard production and gray iron pilot production with the additive were, according to the standard (STN 83 8303), negative. Additionally, the results of ecotoxicological tests of concrete composites were negative, with the exception of a 50% substitution of fine aggregate with slag from gray iron pilot production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458982PMC
http://dx.doi.org/10.3390/ma10050505DOI Listing

Publication Analysis

Top Keywords

granulated slag
24
gray iron
24
pilot production
20
slag gray
16
iron pilot
16
slag
8
production gray
8
red mud
8
concrete composites
8
ecotoxicological tests
8

Similar Publications

Comprehensive evaluation of low-carbon cementitious materials prepared with industrial by-product calcium carbide residue (CCR) as alkali source.

Environ Res

January 2025

Science and Technology Innovation Center of Smart Water and Resource Environment, Northeastern University, Shenyang 110819, China; School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; Liaoning Institute of Technological Innovation in Solid Waste Utilization, Northeastern University, Shenyang 110819, China.

The preparation of low-carbon cementitious materials through the synergistic coupling of multiple solid wastes has great potential for development, which can improve the problems of resource shortage and environmental pollution. In this paper, a new type of supersulfated cement was developed by using calcium carbide residue (CCR) as an alkaline activator. The effects of CCR content on the mechanical properties and hydration behaviors of the samples under steam curing conditions were discussed.

View Article and Find Full Text PDF

This study investigates the mechanical and microstructural properties of loose sandy soil stabilized with alkali-activated Ground Granulated Blast Furnace Slag (GGBFS). To examine the effects of varying GGBFS contents, curing times, and confining pressures on mechanical behavior, undrained triaxial and unconfined compressive strength (UCS) tests were conducted. Microstructural analyses using FE-SEM, EDX, and FTIR were performed to elucidate the nature and development of cementation.

View Article and Find Full Text PDF

Mechanical Properties and Durability Performance of Low Liquid Limit Soil Stabilized by Industrial Solid Waste.

Materials (Basel)

January 2025

Cangzhou Municipal Engineering Company Limited, Cangzhou 061000, China.

To improve the mechanical and durability properties of low liquid limit soil, an eco-friendly, all-solid, waste-based stabilizer (GSCFC) was proposed using five different industrial solid wastes: ground granulated blast-furnace slag (GGBS), steel slag (SS), coal fly ash (CFA), flue-gas desulfurization (FGD) gypsum, and carbide slag (CS). The mechanical and durability performance of GSCFC-stabilized soil were evaluated using unconfined compressive strength (UCS), California bearing ratio (CBR), and freeze-thaw and wet-dry cycles. The Rietveld method was employed to analyze the mineral phases in the GSCFC-stabilized soil.

View Article and Find Full Text PDF

Electrolytic manganese residue (EMR) is a solid waste generated during the production of electrolytic manganese metal through wet metallurgy, accumulating in large quantities and causing significant environment pollution. Due to its high sulfate content, EMR can be utilized to prepare supersulfate cement when combined with Ground Granulated Blast furnace Slag (GGBS). In this process, GGBS serves as the primary raw material, EMR acts as the sulfate activator, and CaO powder, along with trace amounts of cement, functions as the alkali activator.

View Article and Find Full Text PDF

Evaluating energy consumption patterns in novel foamed ternary alkali-activated masonry blocks.

Sci Rep

January 2025

Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Veszprém, Hungary.

This study endeavors to tackle the energy requirements of the building sector by employing passive design strategies. However, there exists a dearth of comprehension regarding the energy efficiency performance of foamed alkali-activated materials. To bridge this research gap, the study proposes a solution in the form of a thermally proficient wall material crafted from ceramic tile dust (CTD), class C fly ash (FA), and Ground Granulated Blast-Furnace Slag (GGBS), all of which are industrial by-products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!