Selective laser melting is a promising powder-bed-based additive manufacturing technique for titanium alloys: near net-shaped metallic components can be produced with high resource-efficiency and cost savings [...].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503397PMC
http://dx.doi.org/10.3390/ma10030268DOI Listing

Publication Analysis

Top Keywords

selective laser
8
laser melting
8
inducing stable
4
stable microstructures
4
microstructures selective
4
melting ti-6al-4v
4
ti-6al-4v intensified
4
intensified intrinsic
4
intrinsic heat
4
heat treatments
4

Similar Publications

Successful Multi-Modal Laser Intervention and Histopathological Evaluation of Multiple Glomangiomas.

Lasers Surg Med

December 2024

Department of Dermatology, Veterans Health Administration, San Antonio, Texas, USA.

Objectives: Glomangiomas are benign vascular malformations that exist within the spectrum of glomuvenous malformations which consist of varying amounts of glomus cells, vascular spaces, and smooth muscle. Glomangiomas are often treated due to associated pain, particularly when located on pressure areas such as the back or extensor surfaces, which can cause difficulty with certain activities and occupational functions. Histologically glomangiomas consist of prominent dilated vascular spaces lined by glomus cells typically situated in the deep-dermis to subcutaneous fat which limits treatment to modalities capable of reaching the depth of the tumor including excision, sclerotherapy, and laser therapy.

View Article and Find Full Text PDF

Electrochemiluminescence (ECL) is nowadays a powerful technique widely used in biosensing and imaging, offering high sensitivity and specificity for detecting and mapping biomolecules. Screen-printed electrodes (SPEs) offer a versatile and cost-effective platform for ECL applications due to their ease of fabrication, disposability, and suitability for large-scale production. This research introduces a novel method for improving the ECL characteristics of screen-printed carbon electrodes (SPCEs) through the application of CO laser treatment following fabrication.

View Article and Find Full Text PDF

The Russian dandelion () is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5.

View Article and Find Full Text PDF

Bloodstream Infection Combined with Thoracic Infection Caused by : A Case Report and Review of the Literature.

Infect Drug Resist

December 2024

Department of Laboratory Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China.

Objective: is usually found in urogenital tract infections and is associated with several extra-genitourinary infections, including septic arthritis, bacteremia, and meningitis. Here, we report a rare case of induced bloodstream infection with thoracic inflammation in a surgical patient.

Methods: A 56-year-old male who underwent surgery for multiple pelvic and rib fractures developed fever, pleural effusion, and wound exudation despite receiving prophylactic anti-infection treatment with cefotiam.

View Article and Find Full Text PDF

Unlike many conventional manufacturing techniques, 3D Printing/Additive Manufacturing (3DP/AM) fabrication creates builds with unprecedented degrees of structural and geometrical complexities. However, uncertainties in 3DP/AM processes and material attributes could cause geometric and structural quality issues in resulting builds and products. Evaluating the sensitivity of process parameters and material properties for process optimization, quality assessment, and closed-loop control is crucial in practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!