Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A review of the research activities and achievements at Shenzhen University is conducted in this paper concerning the creation and further development of novel microcapsule based self-resilience systems for their application in concrete structures. After a brief description of pioneering works in the field starting about 10 years ago, the principles raised in the relevant research are examined, where fundamental terms related to the concept of resilience are discussed. Several breakthrough points are highlighted concerning the three adopted comprehensive self-resilience systems, namely physical, chemical and microbial systems. The major challenges regarding evaluation are emphasized and further development concerning self-resilience in concrete structures will be addressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5344554 | PMC |
http://dx.doi.org/10.3390/ma10010002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!