Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydroxytyrosol (HT), a phenolic compound in olive oil, exerts an anti-inflammatory effect in cardiovascular diseases. Recent studies found that autophagy was a therapeutic target of diseases. However, the effect of HT on autophagy in vascular adventitial fibroblasts (VAFs) remains unknown. Thus, in this study, we aimed to determine the effect of HT on cell autophagy and related signaling pathway and whether HT regulates the inflammatory response through autophagy in VAFs. Our results showed that HT promoted cell autophagy by increasing the conversion of LC3 and Beclin1 expression and the autophagic flux in VAFs stimulated with tumor necrosis factor-α (TNF-α). HT also upregulated the expression of the deacetylase sirtuin 1 (SIRT1) protein and mRNA compared with the TNF-α group. The molecular docking studies showed the good compatibility between HT and SIRT1, indicating that HT might act through SIRT1. Further study found that HT regulated autophagy through SIRT1-mediated Akt/mTOR suppression in VAFs. In addition, HT inhibited TNF-α-induced inflammatory response in VAFs through SIRT1. Furthermore, the study showed that HT inhibited the inflammatory response of VAFs through autophagy. These findings indicate that HT regulates the autophagy of VAFs through SIRT1-mediated Akt/mTOR suppression and then inhibits the inflammatory response of VAFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/cjpp-2016-0676 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!