Commercial dyes are extensively utilized to stain specific phases for the visualization applications in emulsions and bioimaging. In general, dyes emit only one specific fluorescence signal and thus, in order to stain various phases and/or interfaces, one needs to incorporate multiple dyes and carefully consider their compatibility to avoid undesirable interactions with each other and with the components in the system. Herein, surfactant-type, perylene-endcapped fluorescent conjugated polymers that exhibit two different emissions are reported, which are cyan in water and red at oil-water interfaces. The interfacially distinct red emission results from enhanced exciton migration from the higher-bandgap polymer backbone to the lower-bandgap perylene endgroup. The confocal microscopy images exhibit the localized red emission exclusively from the circumference of oil droplets. This exciton migration and dual fluorescence of the polymers in different physical environments can provide a new concept of visualization methods in many amphiphilic colloidal systems and bioimaging.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201700262DOI Listing

Publication Analysis

Top Keywords

exciton migration
12
conjugated polymers
8
red emission
8
distinct interfacial
4
interfacial fluorescence
4
fluorescence oil-in-water
4
oil-in-water emulsions
4
emulsions exciton
4
migration conjugated
4
polymers commercial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!