Doxorubicin (Dox) was conjugated to a zinc(II) phthalocyanine (ZnPc) through an acid-cleavable hydrazone linker. This azido-containing conjugate was then anchored to the nanochannels of an alkyne-modified mesoporous silica nanoparticle (MSN) system via copper(I)-catalyzed azide-alkyne cycloaddition. An analogous nanosystem was also prepared by immobilization of a hydrazine-substituted ZnPc to the MSN followed by coupling with Dox. The release of Dox under acidic conditions was studied in phosphate-buffered saline. After internalization into human hepatocellular carcinoma HepG2 cells, these nanoparticles showed fluorescence not only for ZnPc, but also for Dox, suggesting that release of Dox was triggered by the acidic intracellular environment. The chemocytotoxic Dox together with singlet oxygen generated upon irradiation on the encapsulated ZnPc in these MSNs could kill the cells effectively. A synergistic cytotoxicity was suggested by a less-than-unity combination index. These nanoparticles function as both nanophotosensitizers for photodynamic therapy and as nanoplatforms for pH-controlled drug release.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201703188DOI Listing

Publication Analysis

Top Keywords

mesoporous silica
8
photodynamic therapy
8
release dox
8
dox
6
encapsulating ph-responsive
4
ph-responsive doxorubicin-phthalocyanine
4
doxorubicin-phthalocyanine conjugates
4
conjugates mesoporous
4
silica nanoparticles
4
nanoparticles combined
4

Similar Publications

Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid.

ACS Appl Bio Mater

January 2025

College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.

Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.

View Article and Find Full Text PDF

In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.

View Article and Find Full Text PDF

Recent advancements in nanotherapeutics have revolutionized cancer treatment through the integration of diagnostic and therapeutic modalities, known as theranostics. This critical review examines the current landscape of nanotherapeutics for various cancers, such as bladder and head and neck squamous cell carcinoma, highlighting current advancements in nanotherapeutics and challenges. Key approaches discussed include biomimetic smart nanocarriers, polymeric smart nanocarriers, inorganic-based smart nanocarriers, and nanorobots.

View Article and Find Full Text PDF

Research of mesoporous silica loaded lignin to enhance the anti-corrosion and anti-weathering performance of epoxy surface.

Int J Biol Macromol

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China. Electronic address:

A new type of filler was added to epoxy resin to prepare a composite coating with excellent corrosion and weathering resistance. The simple synthesis process and nonpolluting raw materials of this filler contribute to the development of green chemistry. Specifically, lignin was encapsulated in mesoporous silica, the synergistic effect between the two resulted in the formation of lignin/mesoporous silica composite particles (MSN-L) with excellent ultraviolet (UV) resistance.

View Article and Find Full Text PDF

Macrophage-Mediated Liquid Metal Nanoparticles for Enhanced Tumor Accumulation and Inhibition.

ACS Biomater Sci Eng

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.

In most studies, the penetration of nanoparticles into tumors was mainly dependent on the enhanced permeability and retention (ERP) effect. However, the penetration of nanoparticles would be limited by tumor-dense structure, immune system, and other factors. To solve these problems, macrophages with active tropism to tumor tissues, loaded nanoparticles with photothermal therapy, and chemotherapy were designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!