Plant chemotypes or chemical polymorphisms are defined by discrete variation in secondary metabolites within a species. This variation can have consequences for ecological interactions or the human use of plants. Understanding the molecular basis of chemotypic variation can help to explain how variation of plant secondary metabolites is controlled. We explored the transcriptomes of the 3 cardinal terpene chemotypes of Melaleuca alternifolia in young leaves, mature leaves, and stem and compared transcript abundance to variation in the constitutive profile of terpenes. Leaves from chemotype 1 plants (dominated by terpinen-4-ol) show a similar pattern of gene expression when compared to chemotype 5 plants (dominated by 1,8-cineole). Only terpene synthases in young leaves were differentially expressed between these chemotypes, supporting the idea that terpenes are mainly synthetized in young tissue. Chemotype 2 plants (dominated by terpinolene) show a greater degree of differential gene expression compared to the other chemotypes, which might be related to the isolation of plant populations that exhibit this chemotype and the possibility that the terpinolene synthase gene in M. alternifolia was derived by introgression from a closely related species, Melaleuca trichostachya. By using multivariate analyses, we were able to associate terpenes with candidate terpene synthases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.13048 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Laboratory of Cellular Toxicology, Faculty of Science, Department of Biology, Badji Mokhtar University, Annaba, Algeria.
Plants (Basel)
January 2025
Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Páter Károly utca 1., H-2100 Gödöllő, Hungary.
In our research six different mint species (peppermint, spearmint (five different chemotypes), Horse mint, mojito mint, apple mint (two different chemotypes), bergamot mint) have been evaluated by referring to their chemical (essential oil (EO) content and composition) and in vitro biological (antibacterial, antioxidant effect) characteristics. The EO amount of the analyzed mint populations varied between 1.99 and 3.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Thyme and oregano essential oils (EOs) and their components have numerous applications in the pharmaceutical, food, and cosmetic industries owing to their antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, and immunological properties. We attempted to create new chemotypes through the hybridization of thyme and oregano for functional EO research and product development. Here, we used interspecific hybridization to create new thyme and oregano germplasms with new EO chemotypes.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Chemical Ecology, Bielefeld University, Bielefeld, Germany.
Some plant species produce an extraordinary diversity of specialized metabolites. The diverse class of terpenes is characteristic for many aromatic plants, and terpenes can occur as both emitted volatiles and stored compounds. Little is known about how intraspecific chemodiversity and phenotypic integration of both emitted volatile and stored terpenes differ intra-individually across plant development and between different plant parts, and studies considering both spatial and temporal scales are scarce.
View Article and Find Full Text PDFPlants (Basel)
December 2024
National Research Council of Italy, Institute of Biomolecular Chemistry (CNR-ICB), Via P. Gaifami 18, 95126 Catania, Italy.
L. (Myrtaceae), widely valued for its aromatic leaves and essential oil, plays a significant role in traditional medicine and modern phytotherapy. The variability in its essential oil composition and bioactive compounds across different populations underscores its potential for novel therapeutic discoveries and agricultural utilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!