A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coadministration of a tumor-penetrating peptide improves the therapeutic efficacy of paclitaxel in a novel air-grown lung cancer 3D spheroid model. | LitMetric

Three-dimensional (3 D) cell culture platforms are increasingly being used in cancer research and drug development since they mimic avascular tumors in vitro. In this study, we focused on the development of a novel air-grown multicellular spheroid (MCS) model to mimic in vivo tumors for understanding lung cancer biology and improvement in the evaluation of aerosol anticancer therapeutics. 3 D MCS were formed using A549 lung adenocarcinoma cells, comprising cellular heterogeneity with respect to different proliferative and metabolic gradients. The growth kinetics, morphology and 3 D structure of air-grown MCS were characterized by brightfield, fluorescent and scanning electron microscopy. MCS demonstrated a significant decrease in growth when the tumor-penetrating peptide iRGD and paclitaxel (PTX) were coadministered as compared with PTX alone. It was also found that when treated with both iRGD and PTX, A549 MCS exhibited an increase in apoptosis and decrease in clonogenic survival capacity in contrast to PTX treatment alone. This study demonstrated that coadministration of iRGD resulted in the improvement of the tumor penetration ability of PTX in an in vitro A549 3 D MCS model. In addition, this is the first time a high-throughput air-grown lung cancer tumor spheroid model has been developed and evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769484PMC
http://dx.doi.org/10.1002/ijc.30913DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
tumor-penetrating peptide
8
novel air-grown
8
air-grown lung
8
spheroid model
8
mcs model
8
a549 mcs
8
mcs
6
ptx
5
coadministration tumor-penetrating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!