Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigated the hydration characteristics and strength development of calcium sulfoaluminate-belite (CSAB) cements incorporating calcium carbonate (CC) powders with various particle size distributions and different gypsum amounts. In general, the CSAB hydration was accelerated by the CC powder, but the acceleration and resulting strength improvement were more effective with finer CC powder. Regardless of the fineness of the CC powder, it took part in the hydration of CSAB cement, forming hemicarboaluminate and monocarboaluminate phases. These hydration and nucleation effects compensated for the strength reduction from decreased cementing components (i.e., dilution effect) when finer CC powders were used, while they did not overcome the strength reduction when coarser CC powder was used. On the other hand, increasing the amount of gypsum for a given CC content improved the strength. The strength of CSAB cement had a clear inverse relationship with its total pore volume measured by mercury intrusion porosimetry (MIP). Thermodynamic modeling for CSAB cement hydration showed that the use of CC powder increased total volume of solid phases up to 6 wt % at a given amount of gypsum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578266 | PMC |
http://dx.doi.org/10.3390/ma10080900 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!