Despite advances in microbial detection that quantitative polymerase chain reaction (qPCR) has led to, complex environmental samples, such as sediments, remain a challenge due to presence of PCR inhibitors. Aquatic sediments accumulate particle-bound microbial contaminants and thereby reflect a cumulative microbial load over time. The relatively new droplet digital PCR (ddPCR) has emerged as a direct quantitative method, highly tolerant to PCR inhibitors and relinquishing the necessity for calibration/standard curves. Information is virtually absent where ddPCR has been applied to detect pathogenic organisms in aquatic sediments. This study compared the efficacy of ddPCR with qPCR, for quantification of Salmonella in sediments from the Palmiet River near an informal settlement in Durban, South Africa. ddPCR significantly improved both analytical sensitivity and detection of low concentrations of Salmonella as compared to qPCR. The expected copy numbers measured from both qPCR and ddPCR showed good R values (0.999 and 0.994, respectively). The site mostly affected by the informal settlements exhibited Salmonella in the range of 255 ± 37 and 818 ± 30 Salmonella/g (p ≤ 0.0001) in qPCR and ddPCR, respectively. The improved detection of Salmonella in sediments with ddPCR makes it a promising technical method for the quantification of Salmonella in multifarious environmental samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wh.2017.259 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!