Central to the design and execution of nanocomposite strategies is the invention of polymer-affinitive and multifunctional nanoreinforcements amenable to economically viable processing. Here, a microwave-assisted approach enabled gram-scale fabrication of polymer-affinitive luminescent quantum dots (QDs) from spent coffee grounds. The ultrasmall dimensions (approaching 20 nm), coupled with richness of diverse oxygen functional groups, conferred the zero-dimensional QDs with proper exfoliation and uniform dispersion in poly(l-lactic acid) (PLLA) matrix. The unique optical properties of QDs were inherited by PLLA nanocomposites, giving intensive luminescence and high visible transparency, as well as nearly 100% UV-blocking ratio in the full-UV region at only 0.5 wt % QDs. The strong anchoring of PLLA chains at the nanoscale surfaces of QDs facilitated PLLA crystallization, which was accompanied by substantial improvements in thermomechanical and tensile properties. With 1 wt % QDs, for example, the storage modulus at 100 °C and tensile strength increased over 2500 and 69% compared to those of pure PLLA (4 and 57.3 MPa), respectively. The QD-enabled energy-dissipating and flexibility-imparting mechanisms upon tensile deformation, including the generation of numerous shear bands, crazing, and nanofibrillation, gave an unusual combination of elasticity and extensibility for PLLA nanocomposites. This paves the way to biowaste-derived nanodots with high affinity to polymer for elegant implementation of distinct light management and extreme nanoreinforcements in an ecofriendly manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b09401 | DOI Listing |
Int J Food Microbiol
January 2025
Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea. Electronic address:
Spent coffee grounds (SCGs) have been explored for use as various bioresources, such as biofuels, and are known to possess biological functions, including antioxidant activity. However, the antibiofilm properties of SCGs against pathogenic bacteria have not been fully investigated. Therefore, this study aimed to highlight the inhibitory effects of SCG extract (SCGE) on biofilm formation in Listeria monocytogenes and investigated the underlying mechanisms.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University Astana Kazakhstan
Sodium-ion batteries (SIBs) offer several advantages over traditional lithium-ion batteries, including a more uniform sodium distribution, lower-cost materials, and safer transportation options. A promising development in SIBs is the use of hard carbons as anode materials due to their low insertion voltage and larger interlayer spacing, which improve sodium-ion insertion. Traditionally, hard carbons are made from costly carbon sources, but recent advancements have focussed on using abundant bio-waste, like coffee grounds.
View Article and Find Full Text PDFFoods
December 2024
Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain.
During coffee production, the removal and disposal of the coffee bean-surrounding layers pose an environmental problem. In this work, we examined the effects of several aqueous coffee cherry extracts on the growth and metabolism, biofilm formation, antioxidant capacity and antimicrobial activity of six lactobacilli from the INIA collection and a commercial probiotic GG strain. Growth medium supplementation with different coffee cherry extracts (at 40%) stimulated strain growth and metabolism.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Institute of Chemical Technology, Matunga, Mumbai, India.
This study introduces an innovative approach to high-resolution latent fingerprint detection using carbon quantum dots (CQDs) biosynthesized from spent coffee grounds, enhanced with nitrogen doping. Conventional fingerprinting methods frequently use hazardous chemicals and are costly, highlighting the need for eco-friendly, affordable alternatives that preserve detection quality. The biosynthesized nitrogen-doped CQDs exhibit strong photoluminescence and high stability, offering a sustainable, effective alternative for fingerprint imaging.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino, 111, 80131, Naples, Italy.
Background: Spent coffee grounds (SCG) are the most abundant waste byproducts generated from coffee beverage production worldwide. Typically, these grounds are seen as waste and end up in landfills. However, SCG contain valuable compounds that can be valorized and used in different applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!