Ferrofluid-based magnetic hyperthermia of cancers has gained significant attention in recent years due to its excellent efficacy, few deleterious side effects and unlimited tissue penetration capacity. However, the high tumor osmotic pressure causes injection leakage and thus position imprecision because of the fluidity of the ferrofluid and the absence of multimodal imaging guidance, which create tremendous challenges for clinical application. Here, a body temperature-induced gelation strategy is constructed for accurate localized magnetic tumor regression based on the unique behaviors of a magnetic nanoemulsion hydrogel (MNH) within tumors. The rapid intra-tumor gelation can securely restrict the MNH in tumor tissue without diffusion and leakage. The magnetically induced nanoparticle assembly-enhanced heating in the hydrogel and the heat accumulation caused by crosslinking among the nanoemulsion droplets further increased the heating efficiency. Meanwhile, US/MR/NIR multimodal imaging can guide the whole therapeutic process, achieving excellent magnetic hyperthermia therapeutic efficiency. This work highlights the great promise for improving the magnetic hyperthermia efficiency and the precision of the injection site for localized tumor therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr02858j | DOI Listing |
Front Neurol
December 2024
Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
Background: Emamectin·chlorfenapyr is a compound comprising chlorfenapyr and emamectin benzoate that is widely used in agriculture. Chlorfenapyr toxicity has been verified in animals; however, its true mechanism and progression in humans remain to be elucidated. Cases of emamectin·chlorfenapyr poisoning are seldom.
View Article and Find Full Text PDFNanoscale
December 2024
School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
Infectious bacteria pose an increasing threat to public health, and hospital-acquired bacterial infections remain a significant challenge for wound healing. In this study, we developed an advanced nanoplatform utilizing copper doped magnetic vortex nanoring coated with polydopamine (Cu-MVNp) based nanotherapeutics for bacterial infection tri-therapy. This multifunctional nanoplatform exhibits remarkable dual-stimulus thermogenic capabilities and Fenton-like peroxidase activity.
View Article and Find Full Text PDFJ Pharm Sci
December 2024
Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727, Egypt. Electronic address:
Clinical diagnostics and biological research are advanced by magnetic theranostic, which uses macromolecule-based magnetic theranostic agents for targeted therapy and diagnostic imaging. Within this review, the interaction of magnetic nanoparticles (MNPs) with biological macromolecules will be covered. The exciting potential of macromolecule-based magnetic theranostic agents to be used as a tool in drug delivery, photothermally therapy (PTT), gene therapy, hyperthermia therapy and photodynamic therapy (PDT) will be discussed.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:
Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up").
View Article and Find Full Text PDFACS Appl Nano Mater
December 2024
Department of Inorganic Chemistry, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic.
Designing well-defined magnetic nanomaterials is crucial for various applications, and it demands a comprehensive understanding of their magnetic properties at the microscopic level. In this study, we investigate the contributions to the total anisotropy of Mn/Co mixed spinel nanoparticles. By employing neutron measurements sensitive to the spatially resolved surface anisotropy with sub-Å space resolution, we reveal an additional contribution to the anisotropy constant arising from shape anisotropy and interparticle interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!