Purpose: Design of intravaginal rings (IVRs) for delivery of antiretrovirals is often guided by in vitro release under sink conditions, based on the assumption that in vivo release will follow a similar release profile.

Methods: We conducted a dose-ranging study in the female reproductive tract of pigtail macaques using matrix IVRs containing IQP-0528, a poorly soluble but highly potent antiretroviral drug with an IC of 146 ng/mL. These IVRs consisted of drug-loaded segments, 15.6% IQP-0528 in Tecoflex 85A, comprising either all, half, or a quarter of the entire ring.

Results: In vitro release under sink conditions demonstrates loading-proportional release, with a cumulative 30-day release of 48.5 ± 2.2 mg for our 100% loaded ring, 24.8 ± .36 mg from our 50% loaded ring, and 13.99 ± 1.58 mg from our 25% loaded ring. In vivo, while drug concentration in vaginal fluid is well in excess of IQP-0528's EC, we find no statistical difference between the different ring loadings in either swab drug levels or drug released from our rings.

Conclusions: We show that in vitro release may not accurately reflect in vivo release, particularly for poorly soluble drugs. All tested loadings of our IVRs are capable of delivering IQP-0528 well in excess of the IC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7036280PMC
http://dx.doi.org/10.1007/s11095-017-2224-1DOI Listing

Publication Analysis

Top Keywords

vitro release
12
loaded ring
12
intravaginal rings
8
release
8
release sink
8
sink conditions
8
vivo release
8
well excess
8
dose ranging
4
ranging pharmacokinetic
4

Similar Publications

Anchoring of Probiotic-Membrane Vesicles in Hydrogels Facilitates Wound Vascularization.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.

Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.

View Article and Find Full Text PDF

Kisspeptin and Neurokinin B: roles in reproductive health.

Physiol Rev

January 2025

Department of Investigative Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom.

Kisspeptin and neurokinin B (NKB) play a key role in several physiological processes including in puberty, adult reproductive function including the menstrual cycle, as well as mediating the symptoms of menopause. Infundibular kisspeptin neurons, which co-express NKB, regulate the activity of gonadotropin releasing hormone (GnRH) neurons, and thus the physiological pulsatile secretion of GnRH from the hypothalamus. Outside of their hypothalamic reproductive roles, these peptides are implicated in several physiological functions including sexual behavior and attraction, placental function, and bone health.

View Article and Find Full Text PDF

Inflammation-proliferation transition plays a key role in the successful healing of a common burn type, second-degree burn. Gynura procumbens in vitro adventitious root nanohydrogel is currently being studied for its immunomodulatory to improve reparative environment. Root production and nanohydrogel preparation was done respectively by in vitro propagation and emulsion/ solvent diffusion with carbomer as a polymer.

View Article and Find Full Text PDF

Multidrug resistance (MDR) facilitates tumor recurrence and metastasis, which has become a main cause of chemotherapy failure in clinical. However, the current therapeutic effects against MDR remain unsatisfactory, mainly hampered by the rigid structure of drug-resistant cell membranes and the uncontrolled drug release. In this study, based on a sequential drug release strategy, we engineered a core-shell nanoparticle (DOX-M@CaP@ATV@HA) depleting cholesterol for reverse tumor MDR.

View Article and Find Full Text PDF

Macrophage-specific in vivo RNA editing promotes phagocytosis and antitumor immunity in mice.

Sci Transl Med

January 2025

College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!