The effects of paranodal myelin damage on action potential depend on axonal structure.

Med Biol Eng Comput

Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC, V3T 0A3, Canada.

Published: March 2018

AI Article Synopsis

  • Biophysical computational models are essential for studying how injuries and diseases affect the signaling of axons.
  • The research highlights that variations in axonal structure significantly impact how well axons transmit signals, especially focusing on different calibers and injury mechanisms.
  • Myelin detachment particularly disrupts axonal function, and the effectiveness of potassium channel blockers in restoring function depends on the specific characteristics of the axons and the type of injury.

Article Abstract

Biophysical computational models of axons provide an important tool for quantifying the effects of injury and disease on signal conduction characteristics. Several studies have used generic models to study the average behavior of healthy and injured axons; however, few studies have included the effects of normal structural variation on the simulated axon's response to injury. The effects of variations in physiological characteristics on axonal function were mapped by altering the structure of the nodal, paranodal, and juxtaparanodal regions across reported values in three different caliber axons (1, 2, and 5.7 μm). Myelin detachment and retraction were simulated to quantify the effects of each injury mechanism on signal conduction. Conduction velocity was most affected by axonal fiber diameter (89%), while membrane potential amplitude was most affected by nodal length (86%) in healthy axons. Postinjury axonal functionality was most affected by myelin detachment in the paranodal and juxtaparanodal regions when retraction and detachment were modeled simultaneously. The efficacy of simulated potassium channel blockers on restoring membrane potential and velocity varied with axonal caliber and injury type. The structural characteristics of axons affect their functional response to myelin retraction and detachment and their subsequent response to potassium channel blocker treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-017-1691-1DOI Listing

Publication Analysis

Top Keywords

effects injury
8
signal conduction
8
paranodal juxtaparanodal
8
juxtaparanodal regions
8
myelin detachment
8
membrane potential
8
retraction detachment
8
potassium channel
8
effects
5
axonal
5

Similar Publications

Background: Pedicle screw insertion in posterior spinal surgery can cause vascular injuries, including rare intercostal artery pseudoaneurysms, which are typically discovered incidentally during reimaging. Onyx embolization is an effective treatment for small artery pseudoaneurysms.

Observations: A 36-year-old man who had initially presented with back pain that remained unresponsive to nonsteroidal anti-inflammatory drugs was diagnosed with a T7-8 sarcomatous lesion confirmed by magnetic resonance imaging and biopsy.

View Article and Find Full Text PDF

Despite advancements in surgical techniques for rotator cuff repair, retear rates remain a significant concern. This study systematically reviews the evidence on the effectiveness of the Regeneten Bioinductive Implant in improving healing outcomes. A systematic review of the literature was conducted by searching on PubMed, Embase, Web of Science Core Collection and Cochrane Library.

View Article and Find Full Text PDF

Chryseobacterium indologenes is a rare human pathogen which is nowadays considered an emerging fearsome organism because of its upcoming antibiotic resistance. We present a quite unique case of a multi drug resistant C. indologenes surgical wound infection in a patient submitted to cannulated screw fixation of a displaced medial malleolus fracture.

View Article and Find Full Text PDF

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

Deep venous thrombosis (DVT) has insidious clinical symptoms, and only a few patients suffer from lower limb swelling, tenderness and dorsal flexion pain. We aimed to explore the ultrasonographic features and risk factors of postoperative lower limb DVT in patients with lower limb fractures. Ninety patients with lower limb fractures admitted from January 1st, 2021 to June 30th, 2023 were selected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!