SNP-based genome scanning in worldwide domesticated emmer germplasm showed high genetic diversity, rapid linkage disequilibrium decay and 51 loci for stripe rust resistance, a large proportion of which were novel. Cultivated emmer wheat (Triticum turgidum ssp. dicoccum), one of the oldest domesticated crops in the world, is a potentially rich reservoir of variation for improvement of resistance/tolerance to biotic and abiotic stresses in wheat. Resistance to stripe rust (Puccinia striiformis f. sp. tritici) in emmer wheat has been under-investigated. Here, we employed genome-wide association (GWAS) mapping with a mixed linear model to dissect effective stripe rust resistance loci in a worldwide collection of 176 cultivated emmer wheat accessions. Adult plants were tested in six environments and seedlings were evaluated with five races from the United States and one from Italy under greenhouse conditions. Five accessions were resistant across all experiments. The panel was genotyped with the wheat 90,000 Illumina iSelect single nucleotide polymorphism (SNP) array and 5106 polymorphic SNP markers with mapped positions were obtained. A high level of genetic diversity and fast linkage disequilibrium decay were observed. In total, we identified 14 loci associated with field resistance in multiple environments. Thirty-seven loci were significantly associated with all-stage (seedling) resistance and six of them were effective against multiple races. Of the 51 total loci, 29 were mapped distantly from previously reported stripe rust resistance genes or quantitative trait loci and represent newly discovered resistance loci. Our results suggest that GWAS is an effective method for characterizing genes in cultivated emmer wheat and confirm that emmer wheat is a rich source of stripe rust resistance loci that can be used for wheat improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641275PMC
http://dx.doi.org/10.1007/s00122-017-2957-6DOI Listing

Publication Analysis

Top Keywords

stripe rust
24
emmer wheat
24
rust resistance
20
resistance loci
16
cultivated emmer
12
resistance
9
loci
9
wheat
9
genome-wide association
8
wheat triticum
8

Similar Publications

Stripe rust, induced by f. sp. (), is one of the most destructive fungal diseases of wheat worldwide.

View Article and Find Full Text PDF

Wheat stripe rust, caused by a biotrophic, obligate fungus f. sp. (), is a destructive wheat fungal disease that exists worldwide and caused huge yield reductions during pandemic years.

View Article and Find Full Text PDF

Virulence Characterization and Population Structure of f. sp. in Henan Province, China.

Plant Dis

January 2025

Northwest A&F University, College of Plant Protection, xinong road 22,Yangling, Shaanxi,, PO box, 13#, Yangling, Shaanxi, China, 712100;

Wheat stripe rust, caused by f. sp. (), poses a significant threat to wheat production, particularly in Henan province, which produces more than 36 million tons of wheat grain every year, the highest production among all provinces in China.

View Article and Find Full Text PDF

Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.

View Article and Find Full Text PDF

Evaluation of resistance and molecular detection of resistance genes to wheat stripe rust of 82 wheat cultivars in Xinjiang, China.

Sci Rep

December 2024

Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China.

Wheat stripe rust is a fungal disease caused by Puccinia striiformis f. sp. tritici.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!