The self-assembly of a monolayer of ligands on the surface of noble-metal nanoparticles dictates the fundamental nanoparticle's behavior and its functionality. In this combined computational-experimental study, we analyze the structure, organization, and dynamics of functionalized coating thiols in monolayer-protected gold nanoparticles (AuNPs). We explain how functionalized coating thiols self-organize through a delicate and somehow counterintuitive balance of interactions within the monolayer itself and with the solvent. We further describe how the nature and plasticity of these interactions modulate nanoparticle-based chemosensing. Importantly, we found that self-organization of coating thiols can induce the formation of binding pockets in AuNPs. These transient cavities can accommodate small molecules, mimicking protein-ligand recognition, which could explain the selectivity and sensitivity observed for different organic analytes in NMR chemosensing experiments. Thus, our findings advocate for the rational design of tailored coating groups to form specific recognition binding sites on monolayer-protected AuNPs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5521955 | PMC |
http://dx.doi.org/10.1016/j.chempr.2017.05.016 | DOI Listing |
Sci Rep
December 2024
School of Biomedical Sciences, Suzhou Chien-shiung Institute of Technology, Suzhou, 215411, People's Republic of China.
Over the past decades, bacterial infections resulting from the misuse of antibiotics have garnered significant attention. Among the alternative antibacterial strategies, photodynamic therapy (PDT) has emerged as a promising non-antibiotic approach. However, persistent bacterial biofilms, particularly those composed of gram-negative bacteria with their protective outer membranes, have exhibited remarkable resilience to PDT.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Immunology, Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
Background: Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2) and Influenza A viruses (IAVs) are among the most important causes of viral respiratory tract infections, causing similar symptoms. IAV and SARS-CoV-2 infections can provoke mild symptoms like fever, cough, sore throat, loss of taste or smell, or they may cause more severe consequences leading to pneumonia, acute respiratory distress syndrome or even death. While treatments for IAV and SARS-CoV-2 infection are available, IAV antivirals often target viral proteins facilitating the emergence of drug-resistant viral variants.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Technical University of MunichTUM School of Natural Sciences, Department of Chemistry, WACKER-Chair of Macromolecular Chemistry, Lichtenbergstraße 485748 Garching, Germany.
ACS Infect Dis
January 2025
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
Bacterial resistance, accelerated by the misuse of antibiotics, remains a critical concern for public health, promoting an ongoing exploration for cost-effective and safe antibacterial agents. Recently, there has been significant focus on various nanomaterials for the development of alternative antibiotics. Among these, molybdenum disulfide (MoS) has gained attention due to its unique chemical, physical, and electronic properties, as well as its semiconducting nature, biocompatibility, and colloidal stability, positioning it as a promising candidate for biomedical research.
View Article and Find Full Text PDFBioconjug Chem
December 2024
Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, FI 50019, Italy.
The present study reports the preparation of the first multivalent iminosugars built onto a glyco-gold nanoparticle core (glyco-AuNPs) capable of stabilizing or enhancing the activity of the lysosomal enzyme GCase, which is defective in Gaucher disease. An -nonyltrihydroxypiperidine was selected as the bioactive iminosugar unit and further functionalized, via copper-catalyzed alkyne-azide cycloaddition, with a thiol-ending linker that allowed the conjugation to the gold core. These bioactive ligands were obtained with either a linear monomeric or dendritic trimeric arrangement of the iminosugar.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!