Repetitive mild traumatic brain injury (rmTBI) provokes behavioral and cognitive changes. But the study about electrophysiologic findings and managements of rmTBI is limited. In this study, we investigate the effects of anodal transcranial direct current stimulation (tDCS) on rmTBI. Thirty-one Sprague Dawley rats were divided into the following groups: sham, rmTBI, and rmTBI treated by tDCS. Animals received closed head mTBI three consecutive times a day. Anodal tDCS was applied to the left motor cortex. We evaluated the motor-evoked potential (MEP) and the somatosensory-evoked potential (SEP). T2-weighted magnetic resonance imaging was performed 12 days after rmTBI. After rmTBI, the latency of MEP was prolonged and the amplitude in the right hind limb was reduced in the rmTBI group. The latency of SEP was delayed and the amplitude was decreased after rmTBI in the rmTBI group. In the tDCS group, the amplitude in both hind limbs was increased after tDCS in comparison with the values before rmTBI. Anodal tDCS after rmTBI seems to be a useful tool for promoting transient motor recovery through increasing the synchronicity of cortical firing, and it induces early recovery of consciousness. It can contribute to management of concussion in humans if further study is performed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5523234 | PMC |
http://dx.doi.org/10.1155/2017/1372946 | DOI Listing |
Metab Brain Dis
January 2025
Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.
View Article and Find Full Text PDFSci Rep
November 2024
The Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL, 34243, USA.
Cells
September 2024
Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
Traumatic brain injury (TBI) can cause major disability and increases the risk of neurodegeneration. Post-TBI, there is infiltration of peripheral myeloid and lymphoid cells; there is limited information on the peripheral immune response post-TBI in the immature brain-where injury may interfere with neurodevelopment. We carried out two injury types in juvenile mice: invasive TBI with a controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury and analysed the response at 5- and 35-days post-injury.
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia. Electronic address:
Behav Brain Res
January 2025
Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, 42 East Laurel Road, Suite 2200, Stratford, NJ 08084, USA. Electronic address:
Head trauma often impairs cognitive processes mediated within the prefrontal cortex (PFC), leading to impaired decision making and risk-taking behavior. Mild traumatic brain injury (mTBI) accounts for approximately 80 % of reported head injury cases. Most neurological symptoms of a single mTBI are transient; however, growing evidence suggests that repeated mTBI (rmTBI) results in more severe impairments that worsen with each subsequent injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!