Many landscape genetic studies aim to determine the effect of landscape on gene flow between populations. These studies frequently employ link-based methods that relate pairwise measures of historical gene flow to measures of the landscape and the geographical distance between populations. However, apart from landscape and distance, there is a third important factor that can influence historical gene flow, that is, population topology (i.e., the arrangement of populations throughout a landscape). As the population topology is determined in part by the landscape configuration, I argue that it should play a more prominent role in landscape genetics. Making use of existing literature and theoretical examples, I discuss how population topology can influence results in landscape genetic studies and how it can be taken into account to improve the accuracy of these results. In support of my arguments, I have performed a literature review of landscape genetic studies published during the first half of 2015 as well as several computer simulations of gene flow between populations. First, I argue why one should carefully consider which population pairs should be included in link-based analyses. Second, I discuss several ways in which the population topology can be incorporated in response and explanatory variables. Third, I outline why it is important to sample populations in such a way that a good representation of the population topology is obtained. Fourth, I discuss how statistical testing for link-based approaches could be influenced by the population topology. I conclude the article with six recommendations geared toward better incorporating population topology in link-based landscape genetic studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528204PMC
http://dx.doi.org/10.1002/ece3.3075DOI Listing

Publication Analysis

Top Keywords

population topology
32
gene flow
20
landscape genetic
20
genetic studies
16
landscape
11
topology
8
link-based landscape
8
flow populations
8
historical gene
8
population
8

Similar Publications

The rate of sexual dimorphism in the human hip bone is primarily due to the structural demands of childbirth. Genetic, environmental, and socio-cultural factors can also influence pelvic shape variations across populations. This study examines intra-population sex variation within the Italian population based on regional differences of 280 coxal bones from two documented human osteological collections (Bologna and Sassari) coming from different geographical areas, the northern continental and island regions.

View Article and Find Full Text PDF

Vaccination is the most effective method of preventing and controlling the transmission of infectious diseases within populations. However, the phenomenon of waning immunity can induce periodic fluctuations in epidemic spreading. This study proposes a coupled epidemic-vaccination dynamic model to analyze the influence of immunity waning on the epidemic spreading within the context of voluntary vaccination.

View Article and Find Full Text PDF

Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions.

View Article and Find Full Text PDF

Objectives: Vascular access (VA) stenoses play a significant role in the morbidity of the haemodialysed population. Classifications for diagnosis, assessment and proposal of treatment strategies can be useful clinical and methodological tools. This review aims to present a comprehensive summary and propose further methodological approaches.

View Article and Find Full Text PDF

Left-Right Brain-Wide Asymmetry of Neuroanatomy in the Mouse Brain.

Neuroimage

January 2025

Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA. Electronic address:

Left-right asymmetry of the human brain is widespread through its anatomy and function. However, limited microscopic understanding of it exists, particularly for anatomical asymmetry where there are few well-established animal models. In humans, most brain regions show subtle, population-average regional asymmetries in thickness or surface area, alongside a macro-scale twisting called the cerebral petalia in which the right hemisphere protrudes past the left.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!