A number of psychophysical studies have shown that moving stimuli appear to last longer than static stimuli. Here, we report that the perceived duration for slow moving stimuli can be shorter than for static stimuli under specific circumstances. Observers were tested using natural movies presented at various speeds (0.0× = static, 0.25× = slow, or 1.9× = fast, relative to original speed) and indicated whether test duration was perceived as longer or shorter than comparison movies presented at their original speed. While fast movies were perceived as longer than slow and static movies (in accordance with previous studies), we found that slow movies were perceived as shorter (i.e., time compressed) compared to static images. Similar results were obtained for artificial stimuli consisting of drifting gratings. However, time compression for slow stimuli disappeared if comparison stimuli were replaced by a white static disk that removed repetitive exposures to moving stimuli. Results suggest that duration estimation is modulated by contextual effects induced by the specific diet - or distribution - of prior visual stimuli to which observers are exposed. A simple model, which includes a rapid recalibration of human time estimation via adaptation to preceding stimuli, succeeds in reproducing our experimental data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511836PMC
http://dx.doi.org/10.3389/fpsyg.2017.01195DOI Listing

Publication Analysis

Top Keywords

moving stimuli
12
stimuli
11
time compression
8
rapid recalibration
8
static stimuli
8
movies presented
8
original speed
8
perceived longer
8
movies perceived
8
static
6

Similar Publications

Human postural control system has the capacity to adapt to balance-challenging perturbations. However, the characteristics and mechanisms of postural adaptation to continuous perturbation under the sensory conflicting environments remain unclear. We aimed to investigate the functional role of oscillatory coupling drive to lower-limb muscles with changes in balance control during postural adaptation under multisensory congruent and incongruent environments.

View Article and Find Full Text PDF

Gut Colonization of Zebrafish Larvae Induces a Dampened Sensorimotor Response.

Biomedicines

January 2025

Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA.

Cholera is a diarrheal disease prevalent in populations without access to clean water. Cholera is caused by which colonizes the upper small intestine in humans once ingested. A growing number of studies suggest that the gut microbiome composition modulates animal behavior.

View Article and Find Full Text PDF

Objects project different images when viewed from varying locations, but the visual system can correct perspective distortions and identify objects across viewpoints. This study investigated the conditions under which the visual system allocates computational resources to construct view-invariant, extraretinal representations, focusing on planar symmetry. When a symmetrical pattern lies on a plane, its symmetry in the retinal image is degraded by perspective.

View Article and Find Full Text PDF

Introduction: To interact with the environment, it is crucial to distinguish between sensory information that is externally generated and inputs that are self-generated. The sensory consequences of one's own movements tend to induce attenuated behavioral- and neural responses compared to externally generated inputs. We propose a computational model of sensory attenuation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause for sensory information is inferred.

View Article and Find Full Text PDF

Objective: What we hear may influence postural control, particularly in people with vestibular hypofunction. Would hearing a moving subway destabilize people similarly to seeing the train move? We investigated how people with unilateral vestibular hypofunction and healthy controls incorporated broadband and real-recorded sounds with visual load for balance in an immersive contextual scene.

Design: Participants stood on foam placed on a force-platform, wore the HTC Vive headset, and observed an immersive subway environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!