AI Article Synopsis

  • Graphene quantum dots (GQDs) with an average size of 3.5 nm were created using pulsed laser ablation and used to enhance UV LEDs.
  • The addition of GQDs led to a significant boost in electroluminescence and reduced series resistance in the LEDs, with optimal effects observed at a GQD concentration of 0.9 mg/ml, resulting in a 71% increase in light output power.
  • The improvements are attributed to better photon recycling and efficient carrier transfer from GQDs to the active layer of the LEDs.

Article Abstract

Graphene quantum dots (GQDs) with an average diameter of 3.5 nm were prepared via pulsed laser ablation. The synthesized GQDs can improve the optical and electrical properties of InGaN/InAlGaN UV light emitting diodes (LEDs) remarkably. An enhancement of electroluminescence and a decrease of series resistance of LEDs were observed after incorporation of GQDs on the LED surface. As the GQD concentration is increased, the emitted light (series resistance) in the LED increases (decreases) accordingly. The light output power achieved a maximum increase as high as 71% after introducing GQDs with the concentration of 0.9 mg/ml. The improved performance of LEDs after the introduction of GQDs is explained by the photon recycling through the light extraction from the waveguide mode and the carrier transfer from GQDs to the active layer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541035PMC
http://dx.doi.org/10.1038/s41598-017-07483-3DOI Listing

Publication Analysis

Top Keywords

light emitting
8
emitting diodes
8
photon recycling
8
graphene quantum
8
quantum dots
8
series resistance
8
gqds
6
light
5
enhanced performance
4
performance gan-based
4

Similar Publications

Light People: Prof. Henry Snaith's (FRS) perovskite optoelectronics journey.

Light Sci Appl

January 2025

Executive Management College of CHN ENERGY, No.7 Binhe Avenue, North District of Future Science City, Changping District, Beijing, 102211, China.

In 2012, Prof. Henry Snaith demonstrated the first solid-state perovskite solar cell (PSC) with an efficiency of 10.9%, igniting a surge of interest and research into perovskite materials for their potential to revolutionize the photovoltaic (PV) industry.

View Article and Find Full Text PDF

Pure Mg Cathode for Highly Efficient Single-Layer Organic Light-Emitting Diodes.

ACS Appl Mater Interfaces

December 2024

Center for Optoelectronics Engineering Research, School of Physics and Astronomy, Yunnan University, Kunming 650500, China.

Highly efficient single-layer organic light-emitting diodes (OLEDs) are demonstrated by using a pure Mg cathode that is seeded with a small amount of Ag nucleation sites. Bis(4-phenylthieno[3,2-]pyridinato-,C2')(acetylacetonate)iridium(III) (PO-01)-doped devices with three-, two-, and one-region doping configurations exhibit maximum external quantum efficiency (EQE) values of 22.8%, 21.

View Article and Find Full Text PDF

Environmental drivers of stream metabolism in a middle TN headwater stream.

PLoS One

December 2024

Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.

Monitoring the seasonal and diurnal variations in headwater stream metabolic regimes can provide critical information for understanding how ecosystems will respond to future environmental changes. In East Fork Creek, a headwater stream in middle Tennessee, week-long field campaigns were set up each month from May 2022 to May 2023 to collect stream metabolism estimators. In a more extensive field campaign from July 2-5 in 2022, diel signals were observed for temperature, pH, turbidity, and concentrations of Ca, Mg, K, Se, Fe, Ba, chloride, nitrate, DIC, DO, DOC, and total algae.

View Article and Find Full Text PDF

Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance.

View Article and Find Full Text PDF

Amorphous organic-hybrid vanadium oxide for near-barrier-free ultrafast-charging aqueous zinc-ion battery.

Nat Commun

December 2024

Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China.

Fast-charging metal-ion batteries are essential for advancing energy storage technologies, but their performance is often limited by the high activation energy (E) required for ion diffusion in solids. Addressing this challenge has been particularly difficult for multivalent ions like Zn. Here, we present an amorphous organic-hybrid vanadium oxide (AOH-VO), featuring one-dimensional chains arranged in a disordered structure with atomic/molecular-level pores for promoting hierarchical ion diffusion pathways and reducing Zn interactions with the solid skeleton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!