Systematic Assessment of the Climate Sensitivity of Important Human and Domestic Animals Pathogens in Europe.

Sci Rep

Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston, Cheshire, CH64 7TE, UK.

Published: August 2017

Climate change is expected to threaten human health and well-being via its effects on climate-sensitive infectious diseases, potentially changing their spatial distributions, affecting annual/seasonal cycles, or altering disease incidence and severity. Climate sensitivity of pathogens is a key indicator that diseases might respond to climate change, but the proportion of pathogens that is climate-sensitive, and their characteristics, are not known. The climate sensitivity of European human and domestic animal infectious pathogens, and the characteristics associated with sensitivity, were assessed systematically in terms of selection of pathogens and choice of literature reviewed. Sixty-three percent (N = 157) of pathogens were climate sensitive; 82% to primary drivers such as rainfall and temperature. Protozoa and helminths, vector-borne, foodborne, soilborne and waterborne transmission routes were associated with larger numbers of climate drivers. Zoonotic pathogens were more climate sensitive than human- or animal-only pathogens. Thirty-seven percent of disability-adjusted-life-years arise from human infectious diseases that are sensitive to primary climate drivers. These results help prioritize surveillance for pathogens that may respond to climate change. Although this study identifies a high degree of climate sensitivity among important pathogens, their response to climate change will be dependent on the nature of their association with climate drivers and impacts of other drivers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5541049PMC
http://dx.doi.org/10.1038/s41598-017-06948-9DOI Listing

Publication Analysis

Top Keywords

climate sensitivity
16
climate change
16
climate
13
climate drivers
12
pathogens
10
human domestic
8
infectious diseases
8
sensitivity pathogens
8
respond climate
8
pathogens climate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!