2-Hydroxyisobutyrylation on histone H4K8 is regulated by glucose homeostasis in .

Proc Natl Acad Sci U S A

Ministry of Education Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;

Published: August 2017

New types of modifications of histones keep emerging. Recently, histone H4K8 2-hydroxyisobutyrylation (H4K8) was identified as an evolutionarily conserved modification. However, how this modification is regulated within a cell is still elusive, and the enzymes adding and removing 2-hydroxyisobutyrylation have not been found. Here, we report that the amount of H4K8 fluctuates in response to the availability of carbon source in and that low-glucose conditions lead to diminished modification. The removal of the 2-hydroxyisobutyryl group from H4K8 is mediated by the histone lysine deacetylase Rpd3p and Hos3p in vivo. In addition, eliminating modifications at this site by alanine substitution alters transcription in carbon transport/metabolism genes and results in a reduced chronological life span (CLS). Furthermore, consistent with the glucose-responsive H4K8 regulation, proteomic analysis revealed that a large set of proteins involved in glycolysis/gluconeogenesis are modified by lysine 2-hydroxyisobutyrylation. Cumulatively, these results established a functional and regulatory network among K, glucose metabolism, and CLS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565412PMC
http://dx.doi.org/10.1073/pnas.1700796114DOI Listing

Publication Analysis

Top Keywords

histone h4k8
8
h4k8
6
2-hydroxyisobutyrylation
4
2-hydroxyisobutyrylation histone
4
h4k8 regulated
4
regulated glucose
4
glucose homeostasis
4
homeostasis types
4
types modifications
4
modifications histones
4

Similar Publications

FolSas2 is a regulator of early effector gene expression during Fusarium oxysporum infection.

New Phytol

December 2024

Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.

Fusarium oxysporum f. sp. lycopersici (Fol) that causes a globally devastating wilt disease on tomato relies on the secretion of numerous effectors to mount an infection, but how the pathogenic fungus precisely regulates expression of effector genes during plant invasion remains elusive.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is linked to the accumulation of Aβ, increased tau hyperphosphorylation, persistent neuroinflammation, and a decline in neurotrophic factors, neurogenesis, and synaptic plasticity. Oxytocin (OT) has a significant impact on memory and learning. We examined the influence of intranasal (IN) OT on synaptic plasticity, neurogenesis, histone acetylation, and spatial and cognitive memories in rats.

View Article and Find Full Text PDF

Adult oligodendrocyte progenitors (aOPCs) generate myelinating oligodendrocytes like neonatal progenitors (nOPCs), and they also display unique functional features. Here, using unbiased histone proteomics analysis and ChIP sequencing analysis of PDGFRα+ OPCs sorted from neonatal and adult Pdgfra-H2B-EGFP reporter mice, we identify the activating H4K8ac histone mark as enriched in the aOPCs. We detect increased occupancy of the H4K8ac activating mark at chromatin locations corresponding to genes related to the progenitor state (e.

View Article and Find Full Text PDF

is the main pathogen of lotus rhizome rot, which causes the wilt of many plants. Histone acetyltransferase plays a critical part in the growth and virulence of fungi. In the present study, we identified an FcElp3 in homologous to histone acetyltransferase Elp3.

View Article and Find Full Text PDF

Background: Treatment with regorafenib, a multiple-kinase inhibitor, to manage metastatic colorectal cancers (mCRCs) shows a modest improvement in overall survival but is associated with severe toxicities. Thus, to reduce regorafenib-induced toxicity, we used regorafenib at low concentration along with a dual JAK/HDAC small-molecule inhibitor (JAK/HDACi) to leverage the advantages of both JAK and HDAC inhibition to enhance antitumor activity. The therapeutic efficacy and safety of the combination treatment was evaluated with CRC models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!