The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway.

Cell Metab

Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute, 415 Main Street, Cambridge, MA 02142, USA. Electronic address:

Published: August 2017

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that responds to a diverse set of environmental inputs, including amino acids. Over the past 10 years, a number of proteins have been identified that help transmit amino acid availability to mTORC1. However, amino acid sensors for this pathway have only recently been discovered. Here, we review these recent advances and highlight the variety of unexplored questions that emerge from the identification of these sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560103PMC
http://dx.doi.org/10.1016/j.cmet.2017.07.001DOI Listing

Publication Analysis

Top Keywords

amino acid
12
acid sensors
8
dawn age
4
amino
4
age amino
4
sensors mtorc1
4
mtorc1 pathway
4
pathway mechanistic
4
mechanistic target
4
target rapamycin
4

Similar Publications

Enhancing the growth and essential oil components of Lavandula latifolia using Malva parviflora extract and humic acid as biostimulants in a field experiment.

Sci Rep

January 2025

Department of Floriculture, Ornamental Horticulture and Garden Design, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.

Natural extracts as biostimulants have the potential to enhance the productivity and growth of many medicinal and aromatic plants. This study aimed to enhance the growth, and essential oil (EO) content, as well as composition of Lavandula latifolia Medik. by using Malva parviflora L.

View Article and Find Full Text PDF

Metabolomics combined with physiology and transcriptomics reveal the regulation of key nitrogen metabolic pathways in alfalfa by foliar spraying with nano-selenium.

J Nanobiotechnology

January 2025

Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, People's Republic of China, Key Laboratory of Grassland Resources, Ministry of Education, People's Republic of China, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.

Selenium promotes plant growth and improves nutritional quality, and the role of nano-selenium in alfalfa in regulating nutritional quality is unknown. In this study, using the N labeling method, it was found that nano-selenium could promote plant nitrogen metabolism and photosynthesis by increasing the light energy capture capacity and the activities of key enzymes of the nitrogen metabolism process, leading to an increase in alfalfa nitrogen accumulation and dry matter content. The transcriptome and metabolome revealed that nano-selenium mainly affected the pathways of 'biosynthesis of amino acids', 'starch and sucrose metabolism', 'pentose and glucuronate interconversions', 'pentose phosphate pathway', and 'flavonoid biosynthesis'.

View Article and Find Full Text PDF

Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae.

View Article and Find Full Text PDF

Background: Despite numerous genetic studies on Infectious Bronchitis Virus (IBV), many strains from the Middle East remain misclassified or unclassified. Genotype 1 (GI-1) is found globally, while genotype 23 (GI-23) has emerged as the predominant genotype in the Middle East region, evolving continuously through inter- and intra-genotypic recombination. The GI-23 genotype is now enzootic in Europe and Asia.

View Article and Find Full Text PDF

Insights into Toxicological Mechanisms of Per-/polyfluoroalkyl Substances by Using Omics-centered Approaches.

Environ Pollut

January 2025

College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China. Electronic address:

The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!