Background: Visceral leishmaniasis (VL) caused by Leishmania infantum is characterised by the loss of the ability of the host to generate an effective immune response. Chemokines have a direct involvement in the pathogenesis of leishmaniasis, causing a rapid change in the expression of these molecules during infection by Leishmania.
Objectives: Herein, it was investigated the role of CXCL10 in controlling infection by L. infantum.
Methods: RAW 264.7 macrophages were infected with L. infantum in vitro and treated or not with CXCL10 (25, 50 and 100 ng/mL). Parasite load, as well as nitric oxide (NO), IL-4 and IL-10 production were assessed at 24 and 48 h after infection. In vivo, BALB/c mice were infected and treated or not with CXCL10 (5 μg/kg) at one, three and seven days of infection. Parasite load, IFN-g, IL-4, TGF-β and IL-10 were evaluated one, seven and 23 days post treatment.
Findings: In vitro, CXCL10 reduced parasitic load, not dependent on NO, and inhibited IL-10 and IL-4 secretion. In vivo, CXCL10 was able to reduce the parasite load in both liver and spleen, four weeks after infection, representing a higher decrease in the number of parasites in these organs, also induced IFN-γ at day 23 after treatment, correlating with the decrease in parasite load, and reduced IL-10 and TGF-β.
Main Conclusions: This study suggests a partial protective role of CXCL10 against L. infantum, mediated by IFN-g, not dependent on NO, and with suppression of IL-10 and TGF-β. These data may provide information for the development of new approaches for future therapeutic interventions for VL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5530548 | PMC |
http://dx.doi.org/10.1590/0074-02760160529 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!